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Abstract

Vector space partitions of an n-dimensional vector space V over a finite field are considered
in [5], [10], and more recently in the series of papers [3], [8], and [9]. In this paper, we consider
the generalization of a vector space partition which we call a λ-fold partition (or simply a λ-
partition). In particular, for a given positive integer, λ, we define a λ-fold partition of V to
be a multiset of subspaces of V such that every nonzero vector in V is contained in exactly
λ subspaces in the given multiset. A λ-fold spread as defined in [12] is one example of a λ-
fold partition. After establishing some definitions in the introduction, we state some necessary
conditions for a λ-fold partition of V to exist, then introduce some general ways to construct
such partitions. We also introduce the construction of a dual λ-partition as a way of generating
λ′-partitions from a given λ-partition. One application of this construction is that the dual of
a vector space partition will, in general, be a λ-partition for some λ > 1. In the last section, we
discuss a connection between λ-partitions and some designs over finite fields.

We denote by Vn(q) the vector space of dimension n over the field Fq with q elements, where q
is a power of a prime. In a series of papers ([3], [8], [9]), we extended the results of T. Bu ([5]) and
O. Heden ([10] and [11]) on partitioning V into subspaces. (More precisely, we considered finding
a set of subspaces of V = Vn(q) such that every nonzero vector is in exactly one subspace in this
set.)

One natural extension of our previous work is to examine the idea of a λ-fold partition of
V . As in the vector space partition, we define a λ-fold partition to be a multiset of subspaces
such that every nonzero vector in V is contained in exactly λ subspaces in our multiset. A λ-fold
partition generalizes the idea of a λ-fold spread defined in Section 4.2 of J.W.P. Hirschfeld’s book
on projective geometries over finite fields [12]. In fact, Corollary 8 of this paper extends Theorem
4.16 of [12]. The purpose of this note is to construct certain λ-fold partitions and consider some
questions that naturally arise from our treatment of these partitions.

We start with a more precise definition of λ-fold partition which will be specially useful to prove
our duality theorem (Theorem 15).

Definition 1 Let λ be a positive integer. A λ-fold partition of the vector space V is an ordered
pair (A,α) such that A is a set and α is a map from A to 2V , the set of subsets of V , such that

1. if a ∈ A, then α(a) is a nonzero subspace of V ,

2. if 0 6= v ∈ V , then the cardinality of the set {a ∈ A : v ∈ α(a)} is λ.

We call the cardinality of A the size of the partition and say two λ-partitions (A,α) and (B, β) are
equal if there exists a bijection τ : A→ B such that α = βτ .
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Note that using this definition, a 1-fold partition of V is just a vector space partition in the sense
mentioned above. For brevity, we will henceforth refer to a λ-fold partition simply as a λ-partition.
We will use the term 1-partition of V when we are referring to a standard vector space partition.

We also make the observation that two λ-partitions (A,α) and (B, β) are equivalent if and only
if their multiset images {α(a) : a ∈ A} and {β(b) : b ∈ B} are equal as multisets. As a result,
sometimes we will identify a λ-partition with its multiset image.

Given a 1-partition of V , one easy way to construct a λ-partition of V is to replicate the
1-partition λ times. If one has λ different 1-partitions, then we could also take the union (as
multisets) of these 1-partitions to form another λ-partition of V . The λ-partitions generated in
this way do not add much to our knowledge, but there are more interesting λ-partitions that
do not come from 1-partitions in this way. One such example is the q-Grassmanian G(n, n −
1) consisting of the set of all (n − 1)-dimensional subspaces of V when n ≥ 3, which forms a(
qn−1 − 1

q − 1

)
-partition. More generally, we can consider the q-Grassmanian G(n, r) consisting of

all r-dimensional subspaces of the n-dimensional vector space V . In this case G(n, r) consists of(
n
r

)
q

=
(qn − 1)(qn − q) · · · (qn − qr−1)
(qr − 1)(qr − q) · · · (qr − qr−1)

subspaces of dimension r, each containing qr−1 nonzero

vectors, so that each of the qn−1 nonzero vectors in V are included in

(
n− 1
r − 1

)
q

of these subspaces.

Therefore, G(n, r) forms a

(
n− 1
r − 1

)
q

-partition of V .

If (A,α) is a λ-partition, then we define a λ0-subpartition of (A,α) to be a λ0-partition (B, β)
of V where B ⊆ A, β = α|B, and 0 < λ0 ≤ λ. We say that the λ0-subpartition (B, β) is proper
if 0 < λ0 < λ. Note that if (B, β) is a proper λ0-partition of (A,α), then the complement of
(B, β), or (A \B,α|A\B), also forms a (λ− λ0)-subpartition of (A,α). We say a λ-partition (A,α)
is irreducible if it has no proper λ0-subpartitions for any 0 < λ0 < λ and reducible otherwise. Note
that a 1-partition is always irreducible. Clearly, the λ-partitions built as unions of 1-partitions are
reducible.

Note that not all irreducible λ-partitions are 1-partitions. For example, consider the 2-partition
of V = V3(2) given by α : {1, 2, 3, 4, 5, 6} → 2V , where the nonzero vectors of α(i) for 1 ≤ i ≤ 6 are

α(1) = {100, 011, 111}, α(2) = {010, 001, 011}, α(3) = {001, 110, 111},
α(4) = {110, 010, 100}, α(5) = {101}, α(6) = {101}.

(Here we abbreviate the nonzero vector (a, b, c) by the string of digits abc, where a, b, c ∈ {0, 1}.)
Since a 1-partition of V3(2) can contain at most one 2-dimensional subspace, this 2-partition cannot
be written as the union of two 1-partitions since it contains more than two 2-dimensional subspaces.
Therefore, this 2-partition must be irreducible. This turns out to be a special case of Corollary 3
in the next section.

One goal would be to classify all irreducible λ-partitions for a given V . We note that the problem
of classifying all irreducible λ-partitions includes the classification of all vector space partitions as
a subproblem. To aid us in classifying λ-partitions, we introduce the following terminology. Let
(A,α) be a λ-partition of V , where V has dimension n. We say the λ-partition (A,α) is of type
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[(t1, n1), . . . , (ts, ns)] if for all 1 ≤ k ≤ n we have

|{a : dim(α(a)) = k}| =
∑
ni=k

ti.

Note that this notation does not exclude ti = 0 for some i nor do the ni need to be distinct. We
will consider two partition types [(ts, ns), . . . , (t1, n1)] and [(cr,mr), . . . , (c1,m1)] to be the same if
for all 1 ≤ k ≤ n we have ∑

ni=k

ti =
∑
mj=k

cj .

Sometimes it will be convenient to use the more compact notation ntss · · ·n
t2
2 n

t1
1 for the type

[(ts, ns), . . . , (t2, n2), (t1, n1)].
Before continuing, we prove the following analogy to [5, Lemma 1].

Lemma 1 Let (A,α) be a λ-partition of V and let W be a subspace of V . Define AW = {a ∈ A :
α(a) ∩W 6= {0}} and αW : AW → 2W by αW (a) = α(a) ∩W . Then (AW , αW ) is a λ-partition of
W .

Proof. We verify the two conditions for (AW , αW ) to be a λ-partition of W . Indeed, for every
a ∈ AW we have αW (a) = α(a) ∩W , which is a nonzero subspace. Also, for any 0 6= w ∈ W we
have {a ∈ A : w ∈ α(a)} = {a ∈ A : w ∈ α(a) ∩W} = {a ∈ AW : w ∈ αW (a)}, where the last
equality follows because if 0 6= w ∈ α(a) ∩W then a ∈ AW . Hence, |{a ∈ AW : w ∈ αW (a)}| =
|{a ∈ A : w ∈ α(a)}| = λ. Therefore, (AW , αW ) is a λ-partition of W as claimed.

Note, when dim(W ) = dim(V ) − 1, we have for any a ∈ A either dim(α(a) ∩W ) = dim(α(a))
or dim(α(a) ∩W ) = dim(α(a)) − 1, hence we can use this observation to determine the type of
(AW , αW ) from (A,α).

For example, this lemma can be applied to the

(
qn−1 − 1

q − 1

)
-partition of V consisting of all the

(n− 1)-dimensional subspaces by intersecting with one of those (n− 1)-dimensional subspaces W

to get a

(
qn−1 − 1

q − 1

)
-partition of type

[
(1, n− 1),

(
qn − q
q − 1

, n− 2

)]
.

In Section 1, we first discuss some necessary conditions for a λ-partition to exist. In Section
2, we create some further examples. In Section 3, we introduce the concept of a dual λ-partition.
This allows us to construct λ-partitions from known 1-partitions in a nontrivial way as well as to
create new λ-partitions from those constructed in Section 2.

1 Necessary conditions

In this section, we prove a series of necessary conditions for λ-partitions to exist. For 1-partitions,
there are two immediate necessary conditions. The first of these is the usual diophantine equation
counting the nonzero vectors. So for a 1-partition of Vn(q) of type [(a1, n1), . . . , (at, nt)] to exist,
we must have

t∑
i=1

ai(q
ni − 1) = qn − 1.
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The second condition is a simple dimension consideration that can be stated as follows:

if ai 6= 0 6= aj with i 6= j, then ni + nj ≤ n and if ai ≥ 2, then ni ≤ n/2.

The diophantine equation for 1-partitions has an easy generalization to λ-partitions. In partic-
ular, if (A,α) is a λ-partition of Vn(q) and na = dimα(a), then∑

a∈A
(qna − 1) = λ(qn − 1). (1)

Therefore, if (A,α) is a λ-partition of type nc11 · · ·n
ct
t , we must have

t∑
i=1

ci(q
ni − 1) = λ(qn − 1). (2)

The next theorem is a generalization of the dimension condition for 1-partitions.

Theorem 2 Let (A,α) be a λ-partition of the n-dimensional vector space V over Fq, and suppose
that a1, a2, . . . , aλ+1 ∈ A are distinct elements of A. Then

λ+1∑
i=1

dimα(ai) ≤ λn.

Proof. Let Wj = α(a1)∩α(a2)∩ · · ·∩α(aj) for 1 ≤ j ≤ λ+ 1. We will prove by induction that

dimWj ≥

(
j∑
i=1

dimα(ai)

)
− (j − 1)n, 1 ≤ j ≤ λ+ 1.

This is trivial for j = 1. Assume it holds for j. Then

dimWj+1 = dim(Wj ∩ α(aj+1)) = dimWj + dimα(aj+1)− dim(Wj + α(aj+1))

≥

(
j∑
i=1

dimα(ai)

)
− (j − 1)n+ dimα(aj+1)− n =

(
j+1∑
i=1

dimα(ai)

)
− jn.

Therefore, the j + 1 case is established, hence dimWλ+1 ≥
(∑λ+1

i=1 dimα(ai)
)
− λn.

Now if
∑λ+1

i=1 dimα(ai) > λn, then dimWλ+1 > 0 and hence Wλ+1 contains a nonzero vector
w. Since w is in each set α(ai) for all 1 ≤ i ≤ λ+ 1, the set {a ∈ A : w ∈ α(a)} has cardinality at
least λ+ 1. This contradicts the assumption that (A,α) is a λ-partition of V .

We can use the above theorem to determine some irreducible λ-partitions, as pointed out by a
referee for this paper. We are grateful for this observation.

Corollary 3 Suppose (A,α) is a λ-partition of V = Vn(q) and n > λ. If there exists an integer
0 < k < n/λ such that |{a ∈ A : dimα(a) = n− k}| > λ, then (A,α) is irreducible.
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Proof. Let k be as in the statement of the Corollary and assume (A,α) is reducible. Let
(A1, α1) be a proper λ1-subpartition and let (A2, α2) be its complement, which is a λ2-partition.
By the Pigeonhole principle, for either i = 1 or i = 2 we know (Ai, αi) must contain at least λi + 1
subspaces of dimension n− k. By Theorem 2

λin ≥ (λi + 1)(n− k) = (λi + 1)n− (λi + 1)k > (λi + 1)n− n = λin,

which is a contradiction. Therefore, (A,α) must be irreducible.

Theorem 4 Let (A,α) be a λ-partition of V = Vn(q). Assume r = max{dimα(a) : a ∈ A} < n
and dimα(a) ≥ n− r for all a ∈ A. Then

|A| ≥ λ+ qr.

Proof. We have the usual diophantine equation∑
a∈A

(qdimα(a) − 1) = λ(qn − 1),

and so ∑
a∈A

qdimα(a) = λ(qn − 1) + |A|.

Choose a0 ∈ A with dimα(a0) = r. Taking W1 to be α(a0), we note for a 6= a0 we have

dim(α(a0) ∩ α(a)) = dim(α(a0)) + dim(α(a))− dim(α(a0) + α(a)) ≥ dim(α(a0)) + dim(α(a))− n.

Let t count the elements v of α(a0)\{0}, each counted as many times as there exists an a ∈ A\{a0}
such that v ∈ α(a). Then

t =
∑

a0 6=a∈A
|(α(a0) ∩ α(a)) \ {0}| ≥

∑
a0 6=a∈A

(qmax(0,dim(α(a))+r−n) − 1).

But each element of α(a0)\{0} must be in α(a) for λ−1 elements of A\{a0}, so t = (λ−1)(qr−1).
Hence we get ∑

a∈A\{a0}

(qdimα(a)+r−n − 1) + qr − 1 ≤ (qr − 1)λ.

The left side is∑
a∈A

(qdimα(a)+r−n − 1) − (q2r−n − 1) + qr − 1

= qr−n
∑
a∈A

qdimα(a) − |A| − qr(qr−n − 1)

= qr−n[λ(qn − 1) + |A|]− |A| − qr(qr−n − 1)

= λqr−n(qn − 1) + (qr−n − 1)|A| − qr(qr−n − 1).
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Since this is less than or equal to the right hand side, (qr − 1)λ, we have

(qr−n − 1)|A| − qr(qr−n − 1) ≤ λ[qr − 1− qr−n(qn − 1)] = λ(qr−n − 1).

Dividing by the negative number qr−n − 1 reverses the sense of the inequality, and the theorem
follows.

Lemma 5 Let (A,α) be a λ-partition of V = Vn(q) such that n > m = min{dimα(a) : a ∈ A}.
Let W ⊆ V be a subspace of dimension n − 1. If k = |{a ∈ A : α(a) 6⊆W and dimα(a) = m}|,
then q divides k.

Proof. First suppose that (B, β) is a λ-partition of VN (q) where the minimum dimension of
any subspace in the partition is M . Let B′ = {b ∈ B : dimβ(b) = M}, and suppose |B′| = R.
Then by Equation (1) we have

λ(qN − 1) = R(qM − 1) +
∑

b∈B\B′
(qdimβ(b) − 1) = RqM +

∑
b∈B\B′

qdimβ(b) − |B|,

and so
|B| = λ− λqN +RqM +

∑
b∈B\B′

qdimβ(b). (∗)

Thus
|B| ≡ λ (mod qM ) and |B| ≡ λ (mod q).

Applying this to (A,α) gives |A| ≡ λ (mod qm) and |A| ≡ λ (mod q).
Let (AW , αW ) be the λ-partition induced by (A,α) on W . If m = 1, then |AW | = |A|−k. Since

|AW | ≡ λ (mod q) also, we see that q divides k.
Now assume m > 1 and k > 0. Then A = AW and the minimum dimension of a subspace of

(AW , αW ) is m− 1. Applying (*) to (AW , αW ) gives

|A| = |AW | = λ− λqn−1 + kqm−1 +
∑
a∈AW

dimαW (a)≥m

qdimαW (a).

Since |A| ≡ λ (mod qm) and n− 1 ≥ m, we see that q divides k.

For any λ-partition P of Vn(q), let dimmin(P) be the minimum dimension that occurs in P.
Define

S(P) = {U ∈ P : dim(U) = dimmin(P)},

and let τ(P) denote the number of subspaces of dimension dimmin(P) in P (counting duplications).

Corollary 6 Let P be a λ-partition of V = Vn(q), and let m = dimmin(P) < n and |S(P)| = 1.
Then q divides τ(P).
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Proof. If |S(P)| = 1, then S(P) = {U} for some subspace U ⊆ V . Let W ⊆ V be an
(n−1)-dimensional subspace not containing the subspace U . Then none of the k = τ(P) subspaces
of dimension m in P is contained in W (since they are all identical to U). Thus, it follows from
Lemma 5 that q divides τ(P) and our conclusion holds.

2 Some Initial Constructions

We start this section with a well-known example.

Example 1
Let V be an n-dimensional vector space over F = Fq and identify V with Fqn . Then V can be

partitioned into 1-dimensional Fq subspaces to form the projective space PF (V ). Let J ⊆ V be a
subset consisting of one nonzero element from each one-dimensional subspace. Note |J | = qn−1

q−1 .
If U is a k-dimensional subspace of V , then the multiset P(U) = {αU : α ∈ J} will have |J |

elements and so P(U) will form a
(
qk−1
q−1

)
-partition of V of type

[(
qn − 1

q − 1
, k

)]
. Indeed, note that

for any nonzero v ∈ V we have v ∈ αU ⇔ α−1v ∈ U , hence there are exactly
qk − 1

q − 1
subspaces in

our set that contain v.

Next, we generalize the above example to examine homogeneous λ-partitions, i.e., λ-partitions
of type nt11 .

Proposition 7 Let 1 ≤ k ≤ n = dimV and let r = gcd(k, n). There exists a

(
qk − 1

qr − 1

)
-partition

of V of type

[(
qn − 1

qr − 1
, k

)]
.

Proof. If k | n, we get the 1-partition given in [5, Lemma 2]. So assume k does not divide
n. Let r = gcd(k, n) and V = Vn/r(q

r), hence V is an n-dimensional vector space over Fq. Then
we can choose U to be a (k/r)-dimensional Fqr -subspace of V . Using Example 1, we can use U to

create a λ =

(
(qr)k/r − 1

qr − 1

)
-partition of V of type (k/r)t of Fqr subspaces where

t =

(
(qr)n/r − 1

qr − 1

)
=
qn − 1

qr − 1
.

Since each Fqr -subspace of V of dimension k/r is also a k-dimensional Fq-subspace of V , this gives

us the desired

(
qk − 1

qr − 1

)
-partition of V of type

[(
qn − 1

qr − 1
, k

)]
.

Corollary 8 Let 1 ≤ k ≤ n = dimV and r = gcd(k, n). Then there exists a λ-partition of V of
type kt if and only if (

qk − 1

qr − 1

) ∣∣∣∣ λ.
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Proof. Let τ =
qk − 1

qr − 1
and m =

qn − 1

qr − 1
. If τ | λ, we can just take λ/τ copies of the τ -partition

of V from Proposition 7 to get the corresponding λ-partition.
Conversely, assume that there exists a λ-partition of type kt. Then it follows from Equation

(2) that
t(qk − 1) = λ(qn − 1)⇒ tτ = λm⇒ τ | λm.

Therefore, since gcd(τ,m) = 1, we see that τ | λ.

Next, we describe two methods that allow us to construct λ-partitions from 1-partitions. First,
we introduce a technique for generating some qm-partitions of V .

Proposition 9 Let (A,α) be a λ-partition of V = Vn(q), and let U,W be subspaces such that V =
U ⊕W . If π : V → U is the projection onto U associated with the above direct sum decomposition
of V , then π induces a λqm-partition (B, β) of U where m = dim(W ), B = {(a,w) : a ∈ A,w ∈
W ∩ α(a) 6= α(a)}, and β : B → 2U is given by β(a,w) = π(α(a)).

Proof. Note that for any a ∈ A, π(α(a)) is a subspace of U , so it is clear that β(a,w) = π(α(a))
is a subspace of U for all (a,w) ∈ B. Since W ∩ α(a) 6= α(a), we get β(a,w) = π(α(a)) 6= {0}.

Let u ∈ U∗ = U \ {0} and let Bu = {(a,w) ∈ B : u ∈ β(a,w)}. We now show that |Bu| = λqm

by counting in two ways the cardinality of the set

S = {(u,w) : u ∈ U∗, w ∈W, and u ∈ β(a,w) for some a ∈ A}.

For each u ∈ U∗, there are exactly |Bu| subspaces β(a,w) ∈ B that that contain u. So |S| =
|U∗| |Bu|. On the other hand, for each of the |U∗| |W | pairs (u,w) with u ∈ U∗ and w ∈ W , the
number of a ∈ A such that u ∈ β(a,w) is the same as the number of a ∈ A such that the vector
v = u + w is in the subspace α(a). Since this latter number is λ, we also have |S| = λ|U∗| |W |.
Combining these two counts of |S| yields

|U∗| |Bu| = |S| = λ|U∗| |W | ⇒ |Bu| = λ|W | = λqm,

which concludes the proof.

It follows from the above construction that the type of the λqm-partition will depend on the
relationship between the subspaces α(a) and the subspace W . In particular, if na = dimα(a)
and ra = dim(α(a) ∩W ), then this subspace will contribute qra copies of a subspace of dimension
na − ra in the new partition (B, β). In this way, we can decompose every subspace α(a) of (A,α)
to determine a λqm-partition of U .

Example 2
Consider V5(2). We can identify V5(2) with a 5-dimensional subspace V of V6(2) and let W

be a one-dimensional complement of V . Let (A,α) be a partition of V6(2) of type [(21, 2)]. Since
W is one-dimensional, it is contained in exactly one of the two-dimensional subspaces. Hence the
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2-partition induced on V is of type [(20, 2), (2, 1)]. Similarly, we can see that a [(9, 3)] partition of
V6(2) induces a 2-partition of V of type [(8, 3), (2, 2)].

One important special case of the above is when (A,α) is a 1-partition and W =
⋃
a∈C α(a) for

some proper subset C ⊂ A. If this is the case, we can take B = A \C and get a qm-partition of V .
A second technique for generating λ-partitions from 1-partitions is given in the theorem below.

Theorem 10 Let V = Vn(q) and let (A,α) be a 1-partition of type ntn · · · 2t21t1. (Here we allow
the possibility that tj = 0 if j > 1.) Then for any integer 1 < k ≤ n, there exists a λ-partition
(B, β) of type

nλtn · · · (k + 1)λtk+1kλtk+t1(k − 1)λtk−1 · · · 2λt2

where λ =
qk − 1

q − 1
.

Proof. Let us identify V with the field Fqn and let W be a subspace of V of dimension k.
Define A1 = {a ∈ A : dimα(a) = 1} and A+ = A \ A1. Furthermore, let (C, γ) be a 1-partition of

W of type 1λ where λ =
qk − 1

q − 1
and let B = (A+ × C) ∪A1.

Then we can define a function β : B → 2V as follows. If y = (a, c) ∈ A+ × C, define β(y) =
β(a, c) = {x · w : x ∈ α(a), w ∈ γ(c)}. If y ∈ A1, define β(y) = {x · w : x ∈ α(y), w ∈W}.

We claim the pair (B, β) is a λ-partition of V . Indeed, if y = (a, c) ∈ A+ × C, for any nonzero
v1, v2 ∈ β(y) there exist x1, x2 ∈ α(a), w1, w2 ∈ γ(c) such that v1 = x1w1 and v2 = x2w2. Since
γ(c) is one-dimensional, there exists d ∈ Fq \ {0} such that w2 = dw1, so v2 = (dx2)w1. Hence, for
any d′ ∈ Fq \ {0}, we have v1 + d′v2 = x1w1 + d′dx2w1 = (x1 + d′dx2)w1 ∈ β(y). Therefore β(y) is
a subspace of V . The proof that β(y) is a subspace of V when y ∈ A1 is similar.

Note that for any x ∈ F×qn the function φx : V → V defined by φx(v) = xv is a vector space
automorphism. If y = (a, c) ∈ A+ × C, then γ(c) is one-dimensional so for any nonzero w ∈ γ(c)
we have φw(α(a)) = {xw : x ∈ α(a)} = {xw′ : x ∈ α(a), w′ ∈ γ(c)} = β(y). Hence dimβ(y) =
dimα(a). Also, if y ∈ A1, then α(y) is one-dimensional so for any nonzero x ∈ α(y) we have
φx(W ) = {xw : w ∈W} = {x′w : w ∈W,x′ ∈ α(y)} = β(y). Therefore, dim(β(y)) = dim(W ) = k.

Next, we need to show that for any 0 6= v ∈ V we have |{y ∈ B : v ∈ β(y)}| = λ. But if
y = (a, c) ∈ A+ × C, we have v ∈ β(y) ⇔ Fqw−1v ⊆ α(a) for some 0 6= w ∈ γ(c). If y ∈ A1,
then v ∈ β(y) ⇔ Fqw−1v ⊆ α(y) for some 0 6= w ∈ γ(c). Therefore, since (A,α) is a 1-partition,
|{y ∈ B : v ∈ β(y)}| = |{Fqw−1v : 0 6= w ∈W}| = λ since dim(W ) = k.

Next, we use Theorem 10 to make an observation about the existence of a λ-partition of type
[(t2, s), (t1, r)] where r and s are distinct.

Corollary 11 Let 1 < r ≤ n, 1 ≤ s ≤ n where r 6= s. Then there exists a

(
qs − 1

q − 1

)
-partition of

type

[(
qs − 1

q − 1
, r

)
,

(
qn − qr

q − 1
, s

)]
.

Proof. Let U be an r-dimensional subspace of V . Let P be a 1-partition consisting of U and
all the one-dimensional subspaces not contained in U . Then P is a 1-partition of type r11t, where

9



t =
qn − qr

q − 1
. Now we can apply Theorem 10 to this 1-partition to get a

(
qs − 1

q − 1

)
-partition of V

of type

[(
qs − 1

q − 1
, r

)
,

(
qn − qr

q − 1
, s

)]
Next, we note that if we are given a λ-partition (A,α), we can also take “multiples” of (A,α)

as follows. For each positive integer k, let kA be the set A × {1, 2, . . . , k} and define the function
kα : kA → 2V by (kα)(x, i) = α(x) for all x ∈ A and 1 ≤ i ≤ k. Then (kA, kα) is a kλ-partition
of V . If P = (A,α), the we write kP to indicate (kA, kα). Note that if P = (A,α) is of type
nt11 n

t2
2 · · ·ntss , then kP = (kA, kα) is of type nkt11 nkt22 · · ·nktss .

In some sense, we can reverse the above process using the concept of multiplicity. We define
the multiplicity of the λ-partition P = (A,α) as the greatest common divisor of the set
{|α−1(α(a))| : a ∈ A}.

Lemma 12 Let (A,α) be a λ-partition of multiplicity m > 1. Then there exists a (λ/m)-partition
(B, β) such that (A,α) is equivalent to (mB,mβ).

Proof. Let (A,α) be a λ-partition of V of multiplicity m. Therefore, for every subspace
W ∈ {α(a) : a ∈ A} there exists a positive integer kW such that W occurs kWm times in the
multiset image of α. Now let (B, β) be the (λ/m)-partition corresponding to the multiset where
every W ∈ {α(a) : a ∈ A} occurs kW times. Then it is straightforward to check (A,α) is equivalent
to (mB,mβ) since they have the same multiset image.

3 Dual λ-Partitions

In this section, we use vector space duals to define the dual of a λ-partition. This is slightly
more complicated than taking the dual of each subspace in a λ-partition since we can increase
multiplicities when doing this. Therefore, to get the dual of a λ-partition, we take the vector space
duals of each subspace and then adjust the multiplicity of the resulting λ′-partition to match that
of the original λ-partition. In the lemma below, we state some basic results about vector spaces and
their duals using non-degenerate symmetric bilinear forms. Refer to [1, Chapter 3] or [6, Chapter
8, §27] for proofs of these results.

Let 〈 , 〉 : V ×V → Fq be a non-degenerate symmetric bilinear form. For example, we could use
the standard dot product when V = Fnq . Then 〈 , 〉 induces an isomorphism between V and its dual,

V ∗ = Hom(V,Fq). For any subset S ⊆ V , we define S⊥ = {v ∈ V : 〈v, x〉 = 0 for every x ∈ S}.
When x ∈ V , we denote {x}⊥ by writing x⊥.

Lemma 13 Let S, T be subsets of a finite-dimensional vector space V over F and let 〈 , 〉 : V ×V →
F be a symmetric non-degenerate bilinear form on V . Then we have the following properties:

1. S⊥ is a subspace of V .

2. S ⊆ T ⇒ T⊥ ⊆ S⊥.

3. S⊥ = span(S)⊥.
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4. dim(S⊥) = n− dim(span(S)).

5. (S⊥)⊥ = span(S).

6. (S ∪ T )⊥ = S⊥ ∩ T⊥.

7. (span(S) ∩ span(T ))⊥ = S⊥ + T⊥.

In the proofs below, we will use some of these standard properties of S⊥. We start with an
important example that we will use to build dual λ-partitions.

Example 3
Let J ⊆ V be a set of nonzero vectors representing the one-dimensional subspaces of V . So if

J = {x1, x2, . . . , xk}, we have the following properties:

1.
⋃k
i=1 Fqxi = V ,

2. for any x, y ∈ J , we have Fqx ∩ Fqy 6= {0} ⇒ x = y.

Note here that k = |J | = qn − 1

q − 1
.

Next, define a function α : J → 2V by α(x) = x⊥ for all x ∈ J . We claim that (J, α) forms

a

(
qn−1 − 1

q − 1

)
-partition of V . It is clear that α(x) = x⊥ is a subspace for every x ∈ J . Also, for

any 0 6= v ∈ V , we have v ∈ x⊥ = α(x) ⇔ x ∈ v⊥. So, since dim v⊥ = n − 1, there are exactly(
qn−1 − 1

q − 1

)
elements x ∈ J such that v ∈ α(x). Hence (J, α) is the claimed

(
qn−1 − 1

q − 1

)
-partition

of V of type

[(
qn − 1

q − 1

)
, n− 1

]
. Indeed, (J, α) is just the q-Grassmanian G(n, n − 1) mentioned

in our introduction.

Given a λ′-partition of V , we use Proposition 14 as a first step in accomplishing our goal of
defining a λ-partition that is dual to the initial λ′-partition. We will then create such a dual through
a series of reductions starting from the above example.

Proposition 14 Let U ⊆ V = Vn(q) be a subspace of dimension r. Let Q ⊆ U consist of one
nonzero vector representative for each one-dimensional subspace of U . (So for each 0 6= u ∈ U
there exists x ∈ Q such that Fqu = Fqx; and for any x, y ∈ Q, if Fqx = Fqy, then x = y.) Then the
following hold:

1. If r = dim(U) ≥ 2, then
⋃
x∈Q x

⊥ = V .

2. If w ∈ U⊥, then the set {x ∈ Q : w ∈ x⊥} has order
qr − 1

q − 1
.

3. If w 6∈ U⊥, then the set {x ∈ Q : w ∈ x⊥} has order
qr−1 − 1

q − 1
.

11



Proof. Choose x1, . . . , xr ∈ Q so that {x1, . . . , xr} is a basis of U . Let 0 6= v ∈ V and for each
1 ≤ i ≤ r define γi = 〈xi, v〉. If γj = 0 for any j, then v ∈ x⊥j ⊆

⋃r
i=1 x

⊥
i . If γj 6= 0 for all j, then

the vector

y =

(
r∑
i=2

γi

)
x1 − γ1

(
r∑
i=2

xi

)
∈ U \ {0}

satisfies

〈y, v〉 =

(
r∑
i=2

γi

)
〈x1, v〉 − γ1

(
r∑
i=2

〈xi, v〉

)

=

(
r∑
i=2

γi

)
γ1 − γ1

(
r∑
i=2

γi

)
= 0.

So v ∈ y⊥. Since y 6= 0, there exists z ∈ Q such that Fqy = Fqz. Therefore, v ∈ z⊥ ⊆
⋃
x∈Q x

⊥. So

we have established that
⋃
x∈Q x

⊥ = V .

Next, since Q ⊆ U , for every x ∈ Q we have U⊥ ⊆ x⊥; so for any w ∈ U⊥, the set {x ∈ Q : w ∈
x⊥} = Q, hence has order

qr − 1

q − 1
as claimed.

Finally, if w 6∈ U⊥, then for any x ∈ Q ⊆ U we have w ∈ x⊥ ⇔ x ∈ w⊥∩U . But dim(w⊥∩U) =

r − 1 since dimw⊥ = n − 1 and U 6⊆ w⊥. Hence, there are exactly
qr−1 − 1

q − 1
one-dimensional

subspaces of w⊥ ∩ U . So it follows that the order of the set {x ∈ Q : w ∈ x⊥} is
qr−1 − 1

q − 1
.

We can use the above observations to make a “reduction” in the λ-partition P given in Ex-
ample 3. In particular, based on the above proposition, if we are given an r-dimensional subspace

U ⊆ V , we can reduce λ by
qr−1 − 1

q − 1
by eliminating

qr − 1

q − 1
subspaces of dimension n − 1 (cor-

responding to the x ∈ J ∩ U , where J is the set defined in Example 3) and replacing them with(
qr − 1

q − 1

)
−
(
qr−1 − 1

q − 1

)
= qr−1 copies of the (n− r)-dimensional subspace U⊥.

Using the technique described above, given a λ′-partition (A,α) of V , if we naively try to define
α⊥ : A → 2V by α⊥(a) = (α(a))⊥ for all a ∈ A, we will not in general get a λ′′-partition for some
λ′′. Proposition 14 suggests a minor modification to this strategy to create such a λ′′-partition. We
first demonstrate this technique through an example.

Example 4
Let V = V6(2). For convenience, we can view the vectors of V6(2) as a binary representation

of an integer and then convert this to decimal form to represent this vector. Hence we use deci-
mal notation to represent the nonzero vectors in V6(2) in this example. For example, the vector
(1, 1, 0, 1, 0, 1) would be represented by 1 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 53.

Now consider the following subspaces of V6(2), where we give only the nonzero vectors in each
subspace:
U1 = {1, 2, 3, 4, 5, 6, 7}, U2 = {8, 16, 24, 32, 40, 48, 56},
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U3 = {9, 18, 36, 27, 54, 63, 45}, U4 = {20, 35, 30, 55, 61, 41, 10},
U5 = {38, 31, 53, 57, 42, 12, 19}, U6 = {29, 49, 58, 44, 11, 22, 39},
U7 = {28, 46, 50}, U8 = {15, 51, 60}, U9 = {21, 43, 62}, U10 = {14, 33, 47},
U11 = {13, 23, 26}, U12 = {17, 37, 52}, U13 = {25, 34, 59}.
Then {U1, U2, . . . , U13} is a 1-partition of V6(2) of type [(6, 3), (7, 2)].

Next, we consider the following subspaces (again we only indicate the nonzero vectors in each
subspace), where we use the standard dot product to define S⊥ for any subset S ⊆ V6(2):
U⊥1 = {8, 16, 24, 32, 40, 48, 56}, U⊥2 = {1, 2, 3, 4, 5, 6, 7},
U⊥3 = {9, 18, 36, 27, 54, 63, 45}, U⊥4 = {11, 20, 31, 33, 42, 53, 62},
U⊥5 = {15, 17, 30, 35, 44, 50, 61}, U⊥6 = {14, 19, 29, 39, 41, 52, 58},
U⊥7 = {1, 12, 13, 22, 23, 26, 27, 34, 35, 46, 47, 52, 53, 56, 57},
U⊥8 = {3, 12, 15, 21, 22, 25, 26, 37, 38, 41, 42, 48, 51, 60, 63},
U⊥9 = {7, 10, 13, 19, 20, 25, 30, 34, 37, 40, 47, 49, 54, 59, 60},
U⊥10 = {6, 10, 12, 16, 22, 26, 28, 33, 39, 43, 45, 49, 55, 59, 61},
U⊥11 = {5, 11, 14, 18, 23, 25, 28, 32, 37, 43, 46, 50, 55, 57, 60},
U⊥12 = {2, 8, 10, 21, 23, 29, 31, 36, 38, 44, 46, 49, 51, 57, 59},
U⊥13 = {4, 9, 13, 17, 21, 24, 28, 34, 38, 43, 47, 51, 55, 58, 62}.
It is straightforward to check that {U⊥7 , U⊥8 , . . . , U⊥13, 2U⊥1 , 2U⊥2 , . . . , 2U⊥6 } is a 3-partition of V6(2)
of type [(7, 4), (12, 3)], where we use 2U⊥j to denote two copies of U⊥j . Note that here we needed

two copies of the U⊥j of smallest dimension in order to make this a 3-partition.

Moreover, if we repeat this procedure for this new 3-partition (doubling Ui = (U⊥i )⊥ for 7 ≤
i ≤ 13), we get a 2-partition of type [(12, 3), (14, 2)], which consists of two copies of the original
1-partition {U1, U2, . . . , U13}, hence has multiplicity 2.

Theorem 15 takes into account the multiplicities that can occur and uses Lemma 12 to give us
a range of possible candidates for a dual partition. We then identify the candidate with the same
multiplicity as the original λ′-partition to be the dual partition.

Before stating Theorem 15, we will need to introduce the concept of d-multiplicity. Given a
λ′-partition P = (Y, ω) of V , let D = {dimω(y) : y ∈ Y }. For each d ∈ D define the d-multiplicity
µd of P to be the greatest common divisor of the set {|ω−1(ω(y))| : y ∈ Y and dimω(y) = d}. (If
d 6∈ D, we can define µd to be 0.) It follows from the definitions that the multiplicity of P is the
greatest common divisor of {µd : d ∈ D}.

Theorem 15 Let P = (Y, ω) be a λ-partition of V = Vn(q) of type [(ak, k), (ak−1, k−1), . . . , (as+1, s+
1), (as, s)], where akas 6= 0. For each s ≤ d ≤ k, let µd denote the d-multiplicity of P. Then for
every ` ≥ 1 such that ` is a common divisor of the set {µkqk, µk−1qk−1, . . . , µsqs}, there exists a
λ`-partition P(`) = (C`, γ`) of V such that:

1. λ` =
1

`

[(
k∑
i=s

ai

)
− λ

]
=

1

`
(|Y | − λ).

2. P(`) is of type [(
asq

s

`
, n− s

)
,

(
as+1q

s+1

`
, n− s− 1

)
, . . . ,

(
akq

k

`
, n− k

)]
.
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3. {γ`(c) : c ∈ C`} = {ω(y)⊥ : y ∈ Y } as sets.

4.
∣∣∣γ−1` (

ω(y)⊥
)∣∣∣ =

qry

`

∣∣ω−1 (ω(y))
∣∣ where ry = dimω(y).

Proof. Let (J, α) be the

(
qn−1 − 1

q − 1

)
-partition of (n − 1)-dimensional subspaces of V de-

fined in Example 3, where α(x) = x⊥ for all x ∈ J . Let (Y, ω) be a λ-partition of V of type
[(ak, k), . . . , (as, s)], where akas 6= 0 and m =

∑k
i=s ai is the size of (Y, ω). For each y ∈ Y , let

ry = dim(ω(y)).
Next, consider the Cartesian product J × Y and the canonical projection π : J × Y → J onto

J defined by π(x, y) = x for all (x, y) ∈ J × Y . Define

A = {(x, y)| y ∈ Y, x ∈ ω(y)} ⊆ J × Y.

We claim that (A,απ) is a λ

(
qn−1 − 1

q − 1

)
-partition of V . Clearly απ(x, y) = α(x) = x⊥ is a

subspace for all (x, y) ∈ A. Let 0 6= v ∈ V . Then

v ∈ απ(x, y)⇔ v ∈ x⊥ and x ∈ ω(y)⇔ x ∈ v⊥ ∩ ω(y).

So

|{(x, y) ∈ A : v ∈ απ(x, y)}| =
∑
y∈Y

1

q − 1
|v⊥ ∩ ω(y)| = λ

(
qn−1 − 1

q − 1

)
,

where the last equality follows because (YW , ωW ) is a λ-partition of W = v⊥ by Lemma 1.
Now, for each y ∈ Y , let Ay = {(x, y) ∈ A : x ∈ ω(y)}, and define αy : Ay → 2V to be the

restriction of απ to Ay. Then (A,απ) =
(⋃

y∈Y Ay,
⋃
y∈Y αy

)
. For each y ∈ Y , choose a subset

By ⊆ Ay of cardinality qry−1, let B =
⋃
y∈Y By, and define a function β : A→ 2V by

β(x, y) =

{
ω(y)⊥ if (x, y) ∈ B
V if (x, y) ∈ A \B

for all (x, y) ∈ A.

We claim that (A, β) is a λ

(
qn−1 − 1

q − 1

)
-partition of V .

Proof of Claim: It is clear that β(x, y) is a subspace of V for all (x, y) ∈ A. Next, for any 0 6= v ∈ V ,
we let Sv = {(x, y) ∈ A : v ∈ απ(x, y)} and Tv = {(x, y) ∈ A : v ∈ β(x, y)}. We prove that

|Tv| = |Sv| and we know |Sv| has the required cardinality since (A,απ) is a λ

(
qn−1 − 1

q − 1

)
-partition

of V .
Note that since A is the disjoint union of the Ay for y ∈ Y , it suffices to show that |Tv ∩Ay| =

|Sv ∩ Ay| for all y ∈ Y . So fix y ∈ Y . If v ∈ ω(y)⊥, then Ay ∩ Tv = Ay = Ay ∩ Sv, where the

last equality follows from Proposition 14(2). If v 6∈ ω(y)⊥, then |Ay ∩ Tv| = |Ay| − |By| =
qry−1 − 1

q − 1
and, it follows from Proposition 14(3) that |Ay∩Tv| = |Ay∩Sv|. Therefore, our claim is established.
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Now consider the pair (B, β0), where β0 is the restriction of β to B. By definition, it follows
that {β0(x, y) : (x, y) ∈ B} = {ω(y)⊥ : y ∈ Y } as sets. Furthermore, (B, β0) is also a λ0-partition
of V for some λ0 since for all (x, y) ∈ A \B, β(x, y) = V . We can compute λ0 as follows.

λ0 = λ

(
qn−1 − 1

q − 1

)
−
∑
y∈Y

(
qry−1 − 1

q − 1

)
= λ

(
qn−1 − 1

q − 1

)
−

k∑
i=s

ai

(
qi−1 − 1

q − 1

)
.

But, since (Y, ω) is a λ-partition, we know

k∑
i=s

ai(q
i − 1) = λ(qn − 1) ⇒ λqn−1 −

(
k∑
i=s

aiq
i−1

)
=

1

q

(
λ−

(
k∑
i=s

ai

))
.

Hence we see that

λ0 =
1

q − 1

[(
λqn−1 −

k∑
i=s

aiq
i−1

)
−

(
λ−

k∑
i=s

ai

)]

=
1

q − 1

[
1

q

(
λ−

k∑
i=s

ai

)
−

(
λ−

k∑
i=s

ai

)]

=
1

q − 1

(
1− q
q

)(
λ−

k∑
i=s

ai

)

=
1

q

[(
k∑
i=s

ai

)
− λ

]

=
1

q
(|Y | − λ) .

Furthermore, (B, β0) is of type[
(asq

s−1, n− s), (as+1q
s, n− s− 1), . . . , (akq

k−1, n− k)
]
.

Because β0 is constant when restricted to By = Ay ∩ B, in (B, β0) we have |β−10 (ω(y)⊥)| =
|β−10 (β0(x, y))| = |By||ω−1(ω(y))| = qry−1|ω−1(ω(y))|, where (x, y) ∈ B. Therefore, for any s ≤
d ≤ k, the (n−d)-multiplicity of (B, β0) is µdq

d−1. Hence the multiplicity of (B, β0) is the greatest
common divisor g of the set {µsqs−1, µs−1qs−1, . . . , µkqk−1}. So by Lemma 12, there exists a λ′-
subpartition (C, γ) of (B, β0) of multiplicity 1 of type[(

asq
s

qg
, n− s

)
,

(
as+1q

s+1

qg
, n− s− 1

)
, . . . ,

(
akq

k

qg
, n− k

)]
,

where

λ′ =
λ0
g

=
1

qg
(|Y | − λ) .

Furthermore, for every (x, y) ∈ B, there exists a c ∈ C such that γ(c) = β0(x, y) = ω(y)⊥.
Finally, to get the partition P(`) = (C`, γ`), we take the (gq)/` multiple of (C, γ) as described

in Lemma 12 and the discussion immediately preceding it. Then P(`) satisfies the conclusion of the
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theorem.

Given a λ′-partition P of V , in Theorem 15 there is a smallest partition Pmin of multiplicity 1
that occurs when ` is maximized.

Definition 2 Let P = (Y, ω) be a λ′-partition of a vector space V of multiplicity m. The dual
λ-partition P∗ of P is the λ-partition of multiplicity m given by mPmin.

It follows from the definition of P∗ that (mP)∗ = m(P∗) for any m ≥ 1.

Corollary 16 Let P be a λ-partition. Then (P∗)∗ = P.

Proof. Note that since for any λ-partition we have (mP)∗ = m(P∗), it suffices to assume the
multiplicity of P is 1.

Let P = (Y, ω) be a partition of multiplicity 1 of type [(ak, k), . . . , (as, s)], where akas 6= 0. Let
µd denote the d-multiplicity of P for all s ≤ d ≤ k. Furthermore, let P∗ = (C, γ) and (P∗)∗ = (Z, ξ).
Then it follows from Theorem 15(3) that

{ξ(z) : z ∈ Z} = {γ(c)⊥ : c ∈ C} =

{(
ω(y)⊥

)⊥
: y ∈ Y

}
= {ω(y) : y ∈ Y }.

Let y ∈ Y and z ∈ Z such that ξ(z) = ω(y). It suffices to show |ξ−1(ξ(z))| = |ω−1(ω(y))|. Let
c ∈ C be such that γ(c)⊥ = ω(y) = ξ(z). By Theorem 15(4) it follows that the d-multiplicity of P∗
is (µn−d q

n−d)/g for n− k ≤ d ≤ n− s, so

|ξ−1(ξ(z))| = qn−ry

g′
|γ−1(ω(y)⊥)| = qryqn−ry

g′g
|ω−1(ω(y))|

where ry = dimω(y), g is the gcd of {µkqk, µk−1qk−1, . . . , µsqs}, and g′ is the gcd of the set{
µsq

s

g
qn−s,

µs−1q
s−1

g
qn−s+1, . . . ,

µkq
k

g
qn−k

}
.

Therefore, g′g is the gcd of the set {µkqn, µk−1qn, . . . , µsqn}, hence g′g = qn since we assumed the
multiplicity of P was 1. So it follows that |ξ−1(ξ(z))| = |ω−1(ω(y))|, hence (P∗)∗ = P, as claimed.

Many of the λ-partition types that we have discussed above seem realizable to be duals of
1-partitions. An example of a minimal λ-partition that is not the dual of a 1-partition is the 7-
partition of V8(2) of type 3255. In order for this to have been a dual partition of a 1-partition, we
would need a 1-partition of V8(2) of type 5255, which is clearly impossible.

4 λ-partitions and Designs Over Finite Fields

A number of well-studied mathematical structures arise from certain partitions of finite vector
spaces. For example, if P is the set of all subspaces of Vn(q) (which is a λ-partition of Vn(q)),
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then the set of all cosets of the elements of P, denoted by AG(n, q), is what is known as the affine
geometry of dimension n over Fq (see [2]). Similarly, the set of all subspaces of Vn+1(q), denoted
by PG(n, q), is the projective geometry of dimension n over Fq. Other designs arise similarly either
from taking cosets of subspaces in a partition or from taking the subspaces themselves as blocks in
the design. We will first define these terms.

A design is a pair (X,A), where X is a set of elements called points, and A is a collection of
nonempty subsets of X called blocks. Suppose v ≥ 2, λ ≥ 1, and L ⊆ {n ∈ Z : n ≥ 2}. A (v, L, λ)-
pairwise balanced design (abbreviated (v, L, λ)-PBD) is a design (X,A) where: (1) |X| = v, (2)
|A| ∈ L for all A ∈ A, and (3) every pair of distinct points is contained in exactly λ blocks. It is
easy to see that a (v, L, λ)-PBD is equivalent to a decomposition of the λ-fold complete multigraph
λKv into complete subgraphs with orders in L. A (v, {k}, λ)-PBD is better known as a balanced
incomplete block design and is denoted by (v, k, λ)-BIBD.

Suppose (X,A) is a (v, L, λ)-PBD. A parallel class in (X,A) is a subset of disjoint blocks from
A whose union is X. A partition of A into r parallel classes is called a resolution, and (X,A) is
said to be a resolvable PBD if A has at least one resolution.

A parallel class in a (v, L, λ)-PBD is uniform if every block in the parallel class is of the same
size. Let L = {`1, `2, . . . , `r} be an ordered set of integers ≥ 2 and let R = {t1, t2, . . . , tr} be an
ordered multiset of positive integers. A uniformly resolvable design, denoted (v, L, λ,R)-URD, is a
resolvable (v, L, λ)-PBD with ti parallel classes with blocks of size `i for 1 ≤ i ≤ r. It is easy to see
that a (v, {`1, . . . , `r}, λ, {t1, . . . , tr})-URD is equivalent to a factorization of λKv into ti K`i-factors
for 1 ≤ i ≤ r. For some of the necessary conditions for the existence of URDs, we direct the reader
to [7] and the references therein.

If W is a subset of Vn(q), we denote the complete graph with vertices labeled with elements of
W by K(W ). If W and X are subsets of Vn(q) with 0 /∈ X, we define G(W,X) to be the subgraph
of K(Vn(q)) with edge set {{w,w + x} : w ∈ W,x ∈ X}. It is easy to see that if X is a subspace
of Vn(q) of dimension ni, then G(Vn(q), X \ {0}) is a Kqni -factor of Kqn . Moreover, if X1 and X2

are disjoint subspaces, then the factors they induce are also disjoint. Thus a λ-partition P of Vn(q)
of type [(t1, n1), . . . , (tk, nk)] induces a factorization of λKqn into ti Kqni -factors for 1 ≤ i ≤ k.
Equivalently, if we let A denote the subspaces in P, along with all their cosets, then, (Vn(q),A) is a
(qn, {qn1 , . . . , qnk}, λ, {t1, . . . , tk})-URD. Thus we have the following result on URDs as a corollary
to Corollary 11.

Corollary 17 Let 1 < r ≤ n, 1 ≤ s ≤ n where r 6= s and let q be a prime power. Then there exists
a (qn, {qr, qs}, q

s−1
q−1 , {

qs−1
q−1 ,

qn−qr
q−1 })-URD.

Similarly, we have the following result on resolvable designs as a corollary to Proposition 7.

Corollary 18 Let q be a prime power and let k, n be positive integers with k ≤ n. Let r = gcd(k, n).

Then there exists a resolvable

(
qn, qk,

qk − 1

qr − 1

)
-BIBD.

Another related area with potential applications for λ-partitions with additional properties is
the area of designs over finite fields (see [4], for example). A t-(n, k, λ∗; q) design is a collection B
of k-dimensional subspaces of an n-dimensional vector space over Fq with the property that any
t-dimensional subspace is contained in exactly λ∗ members of B. It is also called a design over a
finite field or a q-analog of t-(n, k, λ) design. The collection B is necessarily a λ-partition of Vn(q).
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The first nontrivial example for t ≥ 2 was given by S. Thomas [13]. Namely, he constructed a series
of 2-(n, 3, 7; 2) designs for all n ≥ 7 satisfying (n, 6) = 1.
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