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Abstract

In this paper, we show the equivalence of some quasi-random properties for sparse graphs, that is,
graphs G with edge density p = |E(G)|/

(

n
2

)

= o(1), where o(1) → 0 as n = |V (G)| → ∞. Our main
result (Theorem 16) is the following embedding result. For a graph J , write NJ (x) for the neighborhood
of the vertex x in J , and let δ(J) and ∆(J) be the minimum and the maximum degree in J . Let H be a
triangle-free graph and set dH = max{δ(J) : J ⊆ H}. Moreover, put DH = min{2dH , ∆(H)}. Let C > 1
be a fixed constant and suppose p = p(n) � n−1/DH . We show that if G is such that

(i) degG(x) ≤ Cpn for all x ∈ V (G),

(ii) for all 2 ≤ r ≤ DH and for all distinct vertices x1, . . . , xr ∈ V (G),

|NG(x1) ∩ · · · ∩ NG(xr)| ≤ Cnpr,

(iii) for all but at most o(n2) pairs {x1, x2} ⊆ V (G),
∣

∣|NG(x1) ∩ NG(x2)| − np2
∣

∣ = o(np2),

then the number of labeled copies of H in G is

N(H, Gn) = (1 + o(1))n|V (H)|p|E(H)|.

Moreover, we discuss a setting under which an arbitrary graph H (not necessarily triangle-free) can be
embedded in G. We also present an embedding result for directed graphs.

1 Introduction

Let H be a fixed graph with k vertices and e edges. In what follows, o(1) terms denote functions of n such
that o(1) → 0 as n → ∞. It is well known that, for any constant p, asymptotically almost surely the random
graph G(n, p) contains (1 + o(1))nkpe labeled (not necessarily induced) copies of H . Throughout this paper,
we think of a labeled copy of a graph H in a graph G as an injective function from V (H) to V (G) that
preserves edges.

Let k ≥ 4 be a fixed integer and p ∈ (0, 1). Suppose we have a sequence of graphs {Gn}∞n=1, where Gn

has n vertices and (1+o(1))p
(
n
2

)
edges. We say that {Gn}∞n=1 is (k, p)-quasi-random, or simply quasi-random

for short, if Gn contains (1 + o(1))nkpe labeled (not necessarily induced) copies of H for any graph H with
k vertices, where e is the number of edges in H . It turns out that, for constant p, this notion of quasi-
randomness can be equivalently described in terms of some other properties involving parameters other than
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the number of subgraphs (see [9, 21] and also [6, Chapter 9]). When p = o(1) (i.e., p → 0 as n → ∞), some
of these properties fail to describe quasi-randomness in the above sense.

In this paper, we investigate quasi-random sparse graphs. We consider both directed and undirected
graphs. In Section 1, we outline some well-known results about quasi-random graphs, when p is constant,
as well as a few new results when p = o(1). In Sections 2 and 3, we state and prove our main results. We
present the proofs of our results for undirected graphs in Sections 3.2 and 3.4 and sketch the proof of our
result for directed graphs in Section 3.3. In Section 4, we present some auxiliary facts and related work. In
the last section, Section 5, we summarize a few open questions.

Note on the organization of the paper: The reader who is not familiar with the earlier results about
quasi-random graphs will find this paper basically self-contained, with the relevant background and history.
To such a reader, we suggest to focus on Section 1, Section 2 (up to Conjecture 21), and Section 3. The other
results (and proofs) of the paper are mainly generalizations of the results in the sections indicated above.

The expert reader may skip Section 1 and move directly to Section 2. In Section 2, we suggest the reader
to concentrate on Theorems 16 and 19 and Conjectures 18 and 21. The proofs of Theorems 16 and 19 and
supporting definitions are in Section 3.

Proposition 6 exhibits barriers beyond which Theorem 16 cannot be improved.

Terminology and notation: Our terminology and notation are fairly standard. Our o(1) terms refer to
functions that tend to 0 as n → ∞. More generally, o(f(n)) denotes a function g(n) such that g(n)/f(n) → 0
as n → ∞. We also write g(n) � f(n) if g(n) = o(f(n)). Moreover, for A, B, and δ > 0, we write A ∼δ B
to mean (1 − δ)B < A < (1 + δ)B. Similarly, we write A 6∼δ B if A ≤ (1 − δ)B, or A ≥ (1 + δ)B. Also,
if f(n) and g(n) are functions, we write f(n) ∼ g(n) (resp. f(n) & g(n)) if limn→∞ f(n)/g(n) = 1 (resp.
limn→∞ f(n)/g(n) ≥ 1).

For any integer n, let [n] = {1, . . . , n}. For any set X , we denote the set of all r-elements subsets of X
by [X ]r and we denote the set of all ordered r-tuples of X by Xr = X × · · · × X . The cardinality of X will
be denoted by |X |. We use the following non-standard notation. If U = (u1, . . . , uk) is an ordered k-tuple,
we let U set = {u1, . . . , uk} be the set of the elements occurring in the vector U .

Let G = (V, E) be a graph with vertex set V = V (G) and edge set E = E(G). We write N(x) = NG(x)
for the neighborhood of a vertex x in G, and if X ⊆ V , we let N(X) = NG(X) be the joint, or common,
neighborhood ⋂

x∈X

N(x)

of the vertices in X . We denote the degree of x ∈ V by deg(x) = degG(x) = |N(x)|. We denote the number
of edges in G by e(G). If X ⊆ V , we sometimes write e(X) = eG(X) for the number of edges induced by X
in G. The maximum and the minimum degree in G are denoted by ∆(G) and δ(G). For X ⊆ V , we let G[X ]
be the graph induced by X in G. Usually, Gn denotes a graph on n vertices. We call a subset U ⊆ V stable

(or independent) if there is no edge induced in U .
Finally, we say that a graph property P holds asymptotically almost surely (or almost surely) for a graph

G ∈ G(n, p) if it holds with probability tending to 1 as n → ∞.

1.1 The constant density case

The subject of quasi-random graphs was introduced in the eighties by Thomason [21] and Chung, Graham
and Wilson [9]. They realized the surprising fact that several important properties shared by almost all
graphs are asymptotically equivalent in a deterministic sense. See also [1, 4, 11, 18] for related initial work
in this area and [20] for a recent development.

These equivalent properties are satisfied almost surely by a random graph in which every edge is chosen
independently with probability p = 1/2. In general one may consider a random graph G(n, p) on n vertices
in which every edge is chosen independently with a constant probability p ∈ (0, 1). Then one can show that
the following properties hold for Gn ∈ G(n, p) asymptotically almost surely.
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NSUB(k): For any graph H on k vertices, the number of labeled (not necessarily induced) copies of H in
Gn is

N(H, Gn) = (1 + o(1))nkpe,

where e is the number of edges in H .

DISC: For all X , Y ⊆ V (Gn) with X ∩ Y = ∅, if e(X, Y ) denotes the number of edges between X and Y
then ∣∣e(X, Y ) − p|X ||Y |

∣∣ = o(pn2).

EIG: Let A =
(
ax,y

)
x,y∈V (Gn)

denote the 0–1 adjacency matrix of Gn, with 1 denoting edges. Let λi

(1 ≤ i ≤ n) be the eigenvalues of A and adjust the notation so that λ1 ≥ |λ2| ≥ · · · ≥ |λn|. Then

λ1 = (1 + o(1))pn and |λ2| = o(pn).

CYCLE(4): If C4 denotes the 4-cycle, i.e., the cycle of length 4, then

N(C4, Gn) = (1 + o(1))(pn)4.

TUPLE(s): For all r ∈ [s] = {1, . . . , s}, we have

∣∣|N(x1) ∩ · · · ∩ N(xr)| − npr
∣∣ = o(prn),

for all but at most o(nr) r-element sets {x1, . . . , xr} ⊆ V (Gn).

Above, s and k are arbitrary fixed constants. The following theorem holds (see [9] and [21]).

Theorem 1. Let k ≥ 4 be a fixed integer. Let Gn be a graph on n vertices and (1+o(1))p
(
n
2

)
edges for some

fixed p ∈ (0, 1). If Gn satisfies any of the properties NSUB(k), DISC, EIG, CYCLE(4), and TUPLE(2),
then it satisfies all of them.

Remark 2. Note that the property NSUB(k) depends on a parameter k. It is not hard to show that, for
any k, property NSUB(k + 1) implies property NSUB(k) (see Fact 47). Perhaps quite surprisingly, it follows
from Theorem 1 that property NSUB(k) implies property NSUB(k + 1) as well, as long as k ≥ 4.

To make our assertions more precise, we may substitute the o(1) terms that appear in the definitions
of NSUB(k), DISC, EIG, CYCLE(4), and TUPLE(s) by a parameter ε > 0. We then obtain the properties
for n-vertex graphs Gn given below. In what follows, unless explicitly stated otherwise, we let

p = p(n) = |E(Gn)|

(
n

2

)−1

.

NSUBε(k): For any graph H on k vertices, the number of labeled (not necessarily induced) copies of H in
Gn satisfies

(1 − ε)nkpe < N(H, Gn) < (1 + ε)nkpe,

where e is the number of edges in H .

DISCε: For all X , Y ⊆ V (Gn) with X ∩ Y = ∅, if e(X, Y ) denotes the number of edges between X and Y
then ∣∣e(X, Y ) − p|X ||Y |

∣∣ ≤ εpn2.

EIGε: Let A =
(
ax,y

)
x,y∈V (Gn)

denote the 0–1 adjacency matrix of Gn, with 1 denoting edges. Let λi

(1 ≤ i ≤ n) be the eigenvalues of A and adjust the notation so that λ1 ≥ |λ2| ≥ · · · ≥ |λn|. Then

(1 − ε)pn < λ1 < (1 + ε)pn and |λ2| ≤ εpn.
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CYCLEε(4): We have
(1 − ε)(pn)4 < N(C4, Gn) < (1 + ε)(pn)4.

TUPLEε(s): For all r ∈ [s] = {1, . . . , s}, we have

∣∣|N(x1) ∩ · · · ∩ N(xr)| − npr
∣∣ < εprn,

for all but at most ε
(
n
r

)
r-element sets {x1, . . . , xr} ⊆ V (Gn).

Remark 3.

(a) The equivalence between two properties in Theorem 1, say P and Q, should be understood in the
following way. Property P implies property Q for a sequence of graphs {Gn}∞n=1 (we write P ⇒ Q
for {Gn}∞n=1) if the following holds:

(*) For all ε > 0, there exist δ > 0 and n0 such that any graph Gn with n ≥ n0 vertices satisfying Pδ

satisfies Qε as well. Here, Pδ and Qε stand for P and Q with o(1) replaced by δ and ε respectively.

(b) We will write “P ⇒ Q” to mean “P ⇒ Q for {Gn}∞n=1” when the implicit reference to {Gn}∞n=1 is
clear from the context.

(c) Suppose we have a sequence of graphs {Gn}∞n=1. We may then define the ‘density function’ p = p(n) of

this sequence by putting p = p(n) = |E(Gn)|
(
n
2

)−1
for all n. On the other hand, sometimes we prefer

to think that we have a given function p = p(n), and that our graph sequence {Gn}∞n=1 is such that

|E(Gn)| = (1 + o(1))p

(
n

2

)
.

Although the relationships between {Gn}∞n=1 and p = p(n) in these two approaches are different, we
may clearly ignore this small difference when considering implications of the form P ⇒ Q with P
and Q as above.

The investigation of quasi-randomness, for constant p ∈ (0, 1), turned out to be a fruitful area with
several applications in questions regarding random graphs and algorithms (see, e.g., [2], [5], [10], [14], [16],
[19], and [22]). Some of the open questions in this area deal with the problem of generalizing Theorem 1 to
the case in which p = o(1).

Before we proceed, we mention that in 1985 Thomason [21, 22] already considered the case in which p =
o(1). Our approach in this paper is different from the one taken by Thomason, who investigated pseudoran-
dom properties with error terms that vanish together with p. Our approach is closer in spirit to the one in
the recent paper by Chung and Graham [8].

1.2 The vanishing density case

In this section, we turn our attention to the study of quasi-randomness when p = o(1). The first efforts
towards this direction suggest that a generalization of Theorem 1 (which is valid when p ∈ (0, 1) is con-
stant) will not be straightforward. Indeed the quasi-random properties listed above are no longer equivalent
when p = o(1). For instance, property TUPLE(2) does not imply property NSUB(3), as we shall see in
Proposition 6 below. However, some of these quasi-random properties are equivalent under more restrictive
conditions.

Let TFSUB(k) be the property NSUB(k) restricted to triangle-free graphs H , that is, under TFSUB(k)
we require the number of occurrences of triangle-free graphs H to be ‘correct’ in Gn (see Definition 12). For
suitable values of p (see Theorems 10 and 19), the following diagram holds for “special families of graphs”
such as the family BDD(C, t) and the family CG(C, t) (see Definitions 4 and 8).

TFSUB(k) =⇒ CYCLE(4)
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m Theorem 19 ⇓ Chung–Graham

TUPLE(2) =⇒ DISC
Chung–Graham

⇐⇒ EIG

Note that the “missing” link in the above diagram is the implication DISC ⇒ TUPLE(2). Although
this implication does not hold in general (see [8] and [14]), it is possible that it holds under some natural
conditions (such as BDD(C, t) and CG(C, t)). If this implication does hold under some special conditions,
then the properties CYCLE(4), DISC, EIG, TFSUB(k) and TUPLE(2) would all be equivalent for sequences
of graphs satisfying these conditions and BDD (we make this precise in Remark 22 below). For p = o(1),
the only known counterexamples to the implication DISC ⇒ TUPLE(2) are graphs in which the joint
neighborhood of a few vertices is very large, that is, graphs for which the property BDD(C, t) defined below
fails.

Definition 4. Let constants C > 1 and t ≥ 1 be given. We define BDD(C, t) to be the family of all graphs

G such that, if we let n = |V (G)| and p = |E(G)|/
(

n
2

)
, then

(i) degG(x) ≤ Cpn for all x ∈ V (G),

(ii) for all 2 ≤ r ≤ t and for all distinct vertices x1, . . . , xr ∈ V (G),

|NG(x1) ∩ · · · ∩ NG(xr)| ≤ Cnpr.

Remark 5. Note that BDD(C, t + 1) ⊆ BDD(C, t).

Since the property TFSUB(k) is restricted to the counting of triangle-free graphs only, it is natural to
ask whether this counting extends to graphs with triangles. The following proposition, Proposition 6, shows
that there is no hope for such an extension for graphs out of the family BDD when p = o(1) and even for
graphs in BDD when p = p(n) is of order n−1/3.

Proposition 6.

(A) For any p = p(n) = o(1) that satisfies p(n) � n−1/2, there exists a graph sequence {Gi}∞i=1, with

|V (Gi)| = ni → ∞ as i → ∞ and |E(Gi)| ≥ p(ni)
(
ni

2

)
for all i, for which the following holds:

(i) Gi is triangle-free for all i ≥ 1,

(ii) {Gi}∞i=1 satisfies properties DISC, EIG, and TUPLE(2).

(B) There exists a graph sequence {Gi}∞i=1, with |V (Gi)| = ni → ∞ as i → ∞ and |E(Gi)| = (1/8 +

o(1))n
5/3
i , for which (i) and (ii) above hold and, furthermore

(iii) Gi ∈ BDD(128, 2) for all i ≥ 1.

The proof of Proposition 6 will be discussed in Section 4.2.

Remark 7. It would be interesting to know if one can extend Proposition 6 to the existence of graphs Gi with

|V (Gi)| = ni → ∞ and p(ni) = |E(Gi)|/
(
ni

2

)
� n

−1/3
i such that Gi satisfies (i) and (ii) in Proposition 6

and Gi ∈ BDD(C, 2) for all i for some fixed constant C.

Among other problems, the question of the equivalence of the properties EIG, DISC, and CYCLE(4), in
the sparse setting, was considered in [8] by Chung and Graham. Before we discuss their results, we introduce
some terminology.

For any integer t and any two vertices u and v in a graph G, let et(u, v) denote the number of paths of
length t between u and v. Thus, we always have e1(u, v) ≤ 1 and e2(u, v) = |N(u) ∩ N(v)|.

Definition 8. Let t ≥ 2 be an integer and let C > 1 be a fixed constant. Let CG(C, t) denote the family of

graphs G such that, putting n = |V (G)| and p = |E(G)|/
(
n
2

)
, we have

(i) degG(u) ≤ Cpn for all u ∈ V (G),
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(ii) et(u, v) ≤ Cptnt−1 for all u, v ∈ V (G).

Remark 9. One can observe that

CG(C, t) ⊆ CG(C2, t + 1) and CG(C, 2) = BDD(C, 2).

The next theorem follows from the results of Chung and Graham [8].

Theorem 10. The implications

CYCLE(4) ⇒ EIG ⇒ DISC (1)

hold for any sequence {Gn}∞n=1 with |V (Gn)| = n and |E(Gn)| = (1+o(1))p
(

n
2

)
, as long as p = p(n) � n−1/2.

Remark 11. Chung and Graham have in fact proved that the implication

DISC ⇒ EIG

holds even for fast decreasing functions p = p(n), but assuming an extra hypothesis that can be expressed
in terms of the classes CG(C, t). We refer the interested reader to [8]. In the case in which p is constant, all
the three properties in (1) are equivalent (see also Conjecture 21).

2 Statements of the main results

Now we turn our attention to the main goal of this paper. Complementing the work of Chung and Graham [8,
7], we will address the question as to how the property NSUB(k) relates to the properties CYCLE(4), DISC,
EIG, and TUPLE(2) in the sparse setting. We shall consider both undirected and directed graphs.

For the digraph case, we focus on the embedding of triangle-free digraphs into sparse pseudorandom
digraphs satisfying certain extra conditions. We will only present the proofs of our main results in the
undirected case, as they can be naturally extended to the directed case.

2.1 The undirected case

By Proposition 6 the implication “TUPLE(2) ⇒ NSUB(k)” fails to be true for sequences of graphs with
vanishing density. Thus, additional conditions are needed in order to obtain any new relation between
NSUB(k) and the other properties. One such condition is to restrict the family of graphs G for which such
a relation could exist. Another possibility is to weaken property NSUB(k). This leads us to the following
two adjustments:

(i) As in the work of Chung and Graham [8] (see Theorem 10 above), we restrict the domain to a special
family of graphs G, namely, the family BDD(C, t) introduced in Definition 4.

(ii) We will also weaken the property NSUB(k) and focus on counting the triangle-free subgraphs only.
We refer the reader to Remark 34 for a discussion on the triangle-freeness condition.

Definition 12. Fix an integer k ≥ 4. We say that a sequence of graphs {Gn}∞n=1 with |V (Gn)| = n has the

property TFSUB(k) if it satisfies the following condition:

(‡) For any triangle-free graph H on k vertices, the number of labeled (not necessarily induced) copies of
H in Gn is

N(H, G) = (1 + o(1))nkpe,

where e is the number of edges in H , and p = e(Gn)
(
n
2

)−1
.

Note that the only difference between the properties TFSUB(k) and NSUB(k) is the triangle-freeness

condition. We need the following definitions before we may state our first main theorem.

Definition 13. For any graph H, we let

dH = max{δ(J) : J ⊆ H}.
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Remark 14. If a k-vertex graph H is triangle-free, then dH ≤ k/2.

Definition 15. For any graph H, we let

DH = min{2dH , ∆(H)}.

We may now state our key result.

Theorem 16 (Embedding Lemma). Suppose H is a triangle-free graph on k vertices and e edges.

Let {Gn}∞n=1 be a sequence of graphs with |V (Gn)| = n for all n and with p = p(n) = |E(Gn)|
(

n
2

)−1

satisfying p � n−1/DH . Let C > 1 be a fixed constant and suppose that Gn ∈ BDD(C, DH) and Gn satisfies

TUPLE(2) for all n. More explicitly, for all n, we have

(i) degGn
(x) ≤ Cpn for all x ∈ V (Gn),

(ii) for all 2 ≤ r ≤ DH and for all distinct vertices x1, . . . , xr ∈ V (Gn),

|NGn
(x1) ∩ · · · ∩ NGn

(xr)| ≤ Cnpr,

(iii) for all but at most o(n2) pairs {x1, x2} ⊆ V (Gn),

∣∣|NGn
(x1) ∩ NGn

(x2)| − np2
∣∣ = o(np2).

Then Gn contains (1 + o(1))nkpe labeled copies of H.

Remark 17.

a) Replacing the parameter DH by ∆(H) (the maximum degree of H) may help “better understand” the
Embedding Lemma.

b) Theorem 16 follows from Lemmas 32 and 33; it is proved in Section 3. Roughly speaking, Theorem 16
states that property TUPLE(2) implies property TFSUB(k) as long as we restrict ourselves to graphs G
in an appropriate class BDD(C, t), and the density of G is large enough.

We propose the following conjecture, Conjecture 18.

Conjecture 18. The parameter DH occurring in Theorem 16 may be replaced by dH .

With Theorem 16 in hand, we may deduce the equivalence of some of the properties introduced in
Section 1.1 for sparse graphs. For convenience, from now on {Gn}∞n=1 denotes a sequence of graphs with
|V (Gn)| = n.

Theorem 19. Let a real number C > 1 and an integer k ≥ 4 be fixed. Let p = p(n) be a function of n with

npb2k/3c � 1. (2)

Then properties TFSUB(k), CYCLE(4), and TUPLE(2) are equivalent for any sequence of graphs {Gn}∞n=1

with

Gn ∈ BDD(C, b2k/3c) (3)

for all n and |E(Gn)| = (1 + o(1))p
(

n
2

)
.

The parameter b2k/3c in conditions (2) and (3) in Theorem 19 comes from the fact that if we let

D(k) = max
H

DH , (4)

where the maximum is taken over all triangle-free graphs on k vertices, then (as proved in Fact 35) we have
D(k) = b2k/3c for all k ≥ 4.
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Remark 20. Note that if Conjecture 18 holds then the condition npb2k/3c � 1 in Theorem 19 may be replaced
by the weaker condition npbk/2c � 1.

We also propose the following conjecture.

Conjecture 21. Let C > 1 be an arbitrary constant, and let p = p(n) � n−1/2 be a function of n. Then

the implication

DISC ⇒ TUPLE(2)

holds for any sequence of graphs {Gn}∞n=1 with |E(Gn)| = (1 + o(1))p
(

n
2

)
as long as Gn ∈ BDD(C, 2) for all

large enough n.

Remark 22. If Conjecture 21 holds, then we may add properties DISC and EIG to the collection of equivalent
properties in Theorem 19. Indeed, this follows from the result of Chung and Graham, Theorem 10, stated
above.

To embed general graphs (i.e., graphs that are not necessarily triangle-free) we need a stronger property,
INDTUP(s) (s ≥ 1), defined as follows.

INDTUP(s): For all 1 ≤ r ≤ s and all 0 ≤ t ≤
(

r
2

)
,

∣∣{X ∈ [V (Gn)]r : e(X) = t, |N(X)| 6∼ npr
}∣∣ = o(nrpt).

Remark 23. In the definition of INDTUP above, the expression o(nrpt) that appears on the right-hand side

of the equation would perhaps more appropriately be o
(
nrpt(1 − p)(

r

2)−t
)
. However, since we are interested

in the case in which p = o(1) and s = O(1), we may drop the (1− p)(
r

2)−t factor, which is roughly equal to 1
for such values of p and s.

We may now state our result concerning the embedding of general, not necessarily triangle-free graphs.

Theorem 24. Let k ≥ 3 be an integer and let C > 1 be a fixed constant. Let p = p(n) � n−1/(k−1)

be a function of n. Then, for any sequence of graphs {Gn}∞n=1 with Gn ∈ BDD(C, k − 1) for all n and

|E(Gn)| = (1 + o(1))p
(
n
2

)
, we have

(i) NSUB(k + 1) ⇒ INDTUP(k − 1),

(ii) INDTUP(k − 1) ⇒ NSUB(k).

Perhaps Theorem 24 may be strengthened to the following.

Conjecture 25. Let k ≥ 3 be an integer and let C > 1 be a fixed constant. Let p = p(n) � n−1/(k−1)

be a function of n. Then the properties NSUB(k) and INDTUP(k − 1) are equivalent for any sequence of

graphs {Gn}∞n=1 with Gn ∈ BDD(C, k − 1) for all n and |E(Gn)| = (1 + o(1))p
(
n
2

)
.

2.2 The directed case

In this section, we state our main result for directed graphs, Theorem 26. The proof of this result is discussed
in Section 3.3. Let ~G be a directed graph with set of vertices V and set of arcs ~E. Thus ~G = (V, ~E),

where ~E ⊆ V × V \ {(v, v) : v ∈ V }, and if (u, v) ∈ ~E, then (v, u) /∈ ~E. We denote the out-degree (resp.
in-degree) of a vertex u ∈ V by d+(u) (resp. d−(u)). We define

d++(u, v) = {w ∈ V : (u, w) ∈ ~E and (v, w) ∈ ~E},

and
N ~G(u) = {v ∈ V : (u, v) ∈ ~E or (v, u) ∈ ~E}.

For any directed graph ~G we let G be the undirected graph obtained from ~G by transforming its arcs to
“edges” (ignoring their orientation). With this convention, clearly N ~G(u) = NG(u).
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We let
−−−→
BDD(C, t) be the family of all directed graphs ~G such that G ∈ BDD(C, t). Moreover, below,

given a digraph ~H , we shall consider the parameters dH and DH of the associated undirected graph H .

Let ~G = (V, ~E) be as above. We introduce the property
−−−−−−−→
TUPLE(2) which is analogous to the property

TUPLE(2) for undirected graphs.

−−−−−−−→
TUPLE(2): ~G satisfies the property

−−−−−−−→
TUPLE(2) if the following holds

(a) for all but o(n) vertices u ∈ V ,

d+(u) =
1

2
pn(1 + o(1)),

(b)
∑

(u,v)∈V ×V

(
d++(u, v)

)2
= n2

(
p2n

4

)2

(1 + o(1)).

Our embedding result for directed graphs is as follows.

Theorem 26. Suppose that ~H is a directed graph on k vertices and e arcs such that H is triangle-free. Let

{ ~Gn}∞n=1 be a sequence of directed graph with |V ( ~Gn)| = n for all n and with p = p(n) = |E( ~Gn)|
(

n
2

)−1

satisfying p � n−1/DH . Let { ~Gn}∞n=1 ∈
−−−→
BDD(C, DH) and ~Gn satisfies

−−−−−−−→
TUPLE(2). Then ~Gn contains

N( ~H, ~G) =
1

2e
nkpe(1 + o(1)).

labeled copies of ~H in ~G.

3 Proofs of the main results

3.1 Preliminaries

The following simple definition will be important.

Definition 27 (Degenerate orderings). Let H be a graph. We say that H is d-degenerate if there is an

ordering v1, . . . , vk of the vertices of H such that degHi
(vi) ≤ d for all 1 ≤ i ≤ k, where Hi = H [{v1, . . . , vi}]

is the graph induced by {v1, . . . , vi} in H. Moreover, if H is d-degenerate and this is certified by a certain

ordering of the vertices of H, then we call this ordering a d-degenerate ordering of H.

Remark 28. Let d = dH = max{δ(J) : J ⊆ H}. Then H has a d-degenerate ordering. Indeed we can find
such an ordering in the following way. First select a vertex v ∈ V (H) such that degH(v) = δ(H) ≤ dH (by
the definition of dH) and set vk = v. Let Hk−1 = H − vk, then we repeat the same procedure on Hk−1

and obtain a vertex vk−1 with degHk−1
(vk−1) ≤ δ(Hk−1) ≤ dH . Continuing in this way, we obtain the

desired ordering of V (H) after k = |V (H)| steps. In fact, dH is the smallest integer for which H admits a
d-degenerate ordering.

The following well-known result will be used often.

Lemma 29. For all η > 0, there exists ε0 = ε0(η) > 0 such that, for any family of real numbers {ai ≥
0: 1 ≤ i ≤ n} satisfying the conditions

(i)
∑n

i=1 ai ≥ (1 − ε0)na,

(ii)
∑n

i=1 a2
i ≤ (1 + ε0)na2,

we have ∣∣{i : ai ∼η a}
∣∣ > (1 − η)n.

9



Proof. Let η > 0 be given. We claim that ε0 = η3/3 will do. Let ai (1 ≤ i ≤ n) be as in the statement of
our lemma. Set B =

{
i : |ai − a| ≥ ηa

}
. To prove the lemma, we have to show that |B| < ηn.

From the definition of B, it follows that

n∑

i=1

(ai − a)2 > |B|(ηa)2. (5)

By hypothesis,

n∑

i=1

(ai − a)2 =

n∑

i=1

a2
i − 2a

n∑

i=1

ai +

n∑

i=1

a2

≤ (1 + ε0)na2 − 2a(1 − ε0)na + na2 = 3ε0na2. (6)

Combining (5) and (6), we obtain |B|(ηa)2 < 3ε0na2, which implies that |B| < (3ε0/η2)n = ηn, and our
lemma is proved.

3.2 Proof of Theorems 16 and 19

In this section, we shall prove Theorems 16 and 19. The proof of Theorem 19 is broken down into a few
steps, and two of these steps will basically form the proof of Theorem 16 (see Section 3.2.3).

The proof of Theorem 19 involves the following components. Let k ≥ 4 and C > 1 be given. Suppose

npd(k) � 1, (7)

where
d(k) = max

H
dH ,

and the maximum is taken over all triangle-free graphs H on k vertices. It is easy to see that, in fact,
d(k) = bk/2c. However, in what follows, we often prefer to write d(k) instead of its explicit value.

Suppose Gn ∈ BDD(C, D(k)) for all n, where D(k) is as defined in (4). Recall that D(k) = b2k/3c.

Remark 30. The reader may have noticed that our hypothesis on p = p(n) above, namely (7), is weaker than
the hypothesis in Theorem 19. It turns out that (7) is the natural hypothesis for the proof we shall present.
However, as a simple argument shows, the condition that BDD(C, D(k)) should hold for Gn implies that, in
fact, we have pnD(k) = pnb2k/3c � 1 (see (2)).

The proof of Theorem 19 is broken down as follows.

(a) Let NSUB(C4) be the property NSUB(k) applied to H = C4. Note that

CYCLE(4) = NSUB(C4).

Since C4 is a triangle-free graph and TFSUB(k) ⇒ TFSUB(k − 1) (see Fact 48), the implication

TFSUB(k) ⇒ NSUB(C4) = CYCLE(4)

is immediate for any any sequence of graphs {Gn}∞n=1 (recall k ≥ 4).

(b) Fact 31 below, which may be proved by standard arguments, asserts that

CYCLE(4) = NSUB(C4) ⇒ TUPLE(2),

for any sequence of dense enough graphs {Gn}∞n=1.

(c) Lemma 32 (see below) tells us that

TUPLE(2) ⇒ TUPLE(d(k)).

10



(d) The major piece in the proof of Theorem 19 is the implication

TUPLE(d(k)) ⇒ TFSUB(k).

This implication is stated in its equivalent form as Lemma 33 and its proof, see Section 3.2.2, constitutes
the main task of this chapter.

(f ) Finally the equality D(k) = b2k/3c is proved in Fact 35.

Steps (c) and (d) above basically constitute the proof of Theorem 16 (see Section 3.2.3).

Fact 31. Let C > 1 be a constant and suppose p = p(n) is such that np2 � 1. Then the implication

CYCLE(4) ⇒ TUPLE(2)

holds for any sequence of graphs {Gn}∞n=1 with |E(Gn)| = (1 + o(1))p
(

n
2

)
.

Proof. Let {Gn}∞n=1 be as in the statement of our result and suppose CYCLE(4) holds. We have

∑

{x,y}⊆V,x 6=y

|NGn
(x) ∩ NGn

(y)| =
∑

v∈V

(
deg(v)

2

)

≥ n

(
n−1

∑
v∈V deg(v)

2

)
= n

(
(1 + o(1))pn

2

)

= (1 + o(1))

(
n

2

)
p2n. (8)

Observe that the number of labeled (not necessarily induced) copies of C4 in Gn is

N(C4, Gn) = 4
∑

{x,y}⊆V,x 6=y

(
|NGn

(x) ∩ NGn
(y)|

2

)
. (9)

Since {Gn}∞n=1 satisfies property CYCLE(4), we have

∑

{x,y}⊆V, x 6=y

(
|NGn

(x) ∩ NGn
(y)|

2

)
=

1

4
N(C4, Gn) =

1

4
(1 + o(1))(pn)4. (10)

We now observe that the Cauchy–Schwarz inequality tells that

∑

{x,y}⊆V,x 6=y

|NGn
(x) ∩ NGn

(y)|2 ≥

(
n

2

)−1{ ∑

{x,y}⊆V, x 6=y

|NGn
(x) ∩ NGn

(y)|
}2

�
∑

{x,y}⊆V, x 6=y

|NGn
(x) ∩ NGn

(y)|, (11)

where in the last inequality we used (8) and the fact that p2n → ∞ as n → ∞. Now from (10) and (11), we
obtain that ∑

{x,y}⊆V, x 6=y

|NGn
(x) ∩ NGn

(y)|2 =
1

2
(1 + o(1))(pn)4. (12)

Now Lemma 29 together with (8) and (12) imply that

|NGn
(x) ∩ NGn

(y)| = (1 + o(1))p2n,

for all but at most o(n2) pairs {x, y} ⊆ V .
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We sketch the proof of Lemma 32 (stated below) in Section 3.3, by deriving it as a corollary of Lemma 41.
However, we mention that Lemma 32 was first proved in  Luczak et al. [17]; the proof of Lemma 41 is a simple
extension of the proof in [17] to the directed case.

Lemma 32. Let t ≥ 2 and C > 1 be fixed and suppose p = p(n) satisfies npr � 1. Let {Gn}∞n=1 be a

sequence of graphs with Gn ∈ BDD(C, 2) for all n and |E(Gn)| = (1 + o(1))p
(

n
2

)
. Then the implication

TUPLE(2) ⇒ TUPLE(r)

holds for {Gn}∞n=1.

To complete the proof of Theorem 19, we need to prove Lemma 33 and Fact 35 below.
Let H be an arbitrary triangle-free graph on k vertices and e edges. Recall

dH = max
J⊆H

δ(J)

and
DH = min{2dH , ∆(H)}

(see Definitions 13 and 15).

Lemma 33. Let δ > 0, C > 1, and k ≥ 4 be fixed. Let H be as above and let p = p(n) = o(1) be a function

of n satisfying npDH � 1. Then there exist ε > 0 and an integer n2 for which the following holds. If a

sequence of graphs {Gn}∞n=1 with |V (Gn)| = n is such that, for all n,

(i) Gn ∈ BDD(C, DH),

(ii) p = p(n) = e(Gn)
(
n
2

)−1
,

(iii) TUPLEε(dH) holds for Gn,

then

N(H, Gn) ∼δ nkpe

holds for all n ≥ n2.

Remark 34.
As a prerequisite to our proof of the Embedding Lemma (Theorem 16), we first strengthen TUPLE(2)

to TUPLE(dH) (see Lemma 32), which reduces the Embedding Lemma to Lemma 33. By the hypothesis of
Lemma 33, for all r ≤ dH , there are ∼ nr/r! “good” r-subsets (i.e., X ⊆ V (Gn), |X | = r and |NGn

(X)| ∼
npr).

The proof of Lemma 33 is based on an inductive argument in which the vertices of H are embedded one
by one into Gn. To keep the induction working, we will embed H ′ = H − v (in ∼ n|V (H′)|p|E(H′)| ways) in
such a way that

(†) most of the neighborhoods of the future images of v (in the already embedded copies of H ′) are “good”,
i.e., most of the copies of H ′ in Gn have ∼ npdegH′ (v) potential images for v.

If H is triangle-free, one can show that most of such neighborhoods form an independent set in Gn, which
makes it possible to guarantee the property (†) above.

If H is not triangle-free, the number of such neighborhoods is N < pndegH′(v) = o
(
ndegH′ (v)

)
, where

p = p(n) = o(1) is the density of Gn. In this case, this number N is too small to keep the inductive
argument working.

In order to extend the above proof scheme to general graphs H , we need to replace property TUPLE(dH)
by a stronger one, namely, INDTUP(dH) (see Section 2.1).
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The proof of Lemma 33 is delayed until Section 3.2.2. We finish this section with the statement and proof
of Fact 35.

Fact 35. Let an integer k ≥ 1 be given and let D(k) = maxH DH , where the maximum is taken over all

triangle-free graphs H on k vertices. Then

D(k) =

⌊
2k

3

⌋
.

Proof. Suppose k ≥ 1 is given, and let D(k) be as in the statement of the fact. We may clearly suppose
that k ≥ 2.

First we show that D(k) ≥ b2k/3c. It suffices to exhibit a triangle-free graph H on k vertices for
which DH ≥ b2k/3c. We show that the complete bipartite graph H = K(dk/3e, b2k/3c) with vertex
classes of cardinality dk/3e and b2k/3c will do. We have dH = maxJ⊆H δ(J) ≥ δ(H) = dk/3e. Therefore
2dH ≥ 2dk/3e ≥ 2k/3 ≥ b2k/3c. Since ∆(H) = b2k/3c, we have DH = min{2dH , ∆(H)} ≥ b2k/3c.

Let us now show that D(k) ≤ b2k/3c. To that end, let H be a triangle-free graph on k vertices. We
show that DH ≤ 2k/3. Suppose ∆(H) > 2k/3. Let u be a vertex of H with maximum degree, and suppose
v1, . . . , vk is an ordering of the vertices of H with the last ∆(H) vertices vk−∆(H)+1, . . . , vk forming the
neighborhood of u in H . We claim that this is a (dk/3e − 1)-degenerate ordering of the vertices of H .

To see this, as usual, let Hh = H [{v1, . . . , vh}] for all 1 ≤ h ≤ k. Since H is triangle-free, every
vertex vh with k − ∆(H) + 1 ≤ h has its neighborhood contained in the set {v1, . . . , vk−∆(H)}. Thus
degHh

(vh) ≤ k − ∆(H) < k/3 for all k − ∆(H) + 1 ≤ h ≤ k, hence for all 1 ≤ h ≤ k. Therefore
degHh

(vh) ≤ dk/3e− 1 for all h and we do indeed have a (dk/3e− 1)-degenerate ordering as claimed. Hence
2dH ≤ 2(dk/3e − 1) ≤ 2k/3, and hence DH = min{2dH , ∆(H)} ≤ 2k/3, as required.

3.2.1 The extension lemma and a corollary

In this section, we shall establish a simple lemma, the Extension Lemma, and a corollary, Corollary 38. They
will be used in the proofs of Theorems 16, 19, and 24.

Let H and G be graphs. In what follows, H will always have k vertices and e edges and G will always
have n vertices. In this section, H is an arbitrary graph; in Sections 3.2.2 and 3.2.3, we shall consider
triangle-free graphs H .

Let E(H, G) denote the set of all embeddings of H in G. Moreover, if l ∈ [k] and F = (v1, . . . , vl) ∈ V (H)l

and X = (x1, . . . , xl) ∈ V (G)l, let E(H, G, F, X) denote the set of all embeddings f ∈ E(H, G) such that
f(vi) = xi for all i ∈ [l]. Clearly, we may always assume that the vi (1 ≤ i ≤ l) and the xi (1 ≤ i ≤ l) are
all distinct. Recall that F set = {v1, . . . , vl} and Xset = {x1, . . . , xl}.

Below, for any graph H ′ and any l-tuple F of vertices of H ′, we write w(H ′, F ) for the number of edges
in H ′ that do not have both endpoints in F set. That is,

w(H ′, F ) = |E(H ′)| − |E(H ′[F set])|.

We now prove the following simple lemma.

Lemma 36 (Extension Lemma). Let graphs G and H be given. Suppose 0 ≤ l ≤ max{2, dH}, and

let F ∈ V (H)l and X ∈ V (G)l be fixed. Let C > 0 be a constant and suppose G ∈ BDD(C, DH). Then

|E(H, G, F, X)| ≤ Ck−lnk−lpw(H,F ),

where k = |V (H)|, n = |V (G)|, and p = e(G)
(

n
2

)−1
. In particular, if F set ⊆ V (H) is a stable set, then

|E(H, G, F, X)| ≤ Ck−lnk−lpe,

where e = |E(H)|.

In Claim 37 below, we prove the Extension Lemma under a stronger hypothesis. We then show that the
hypothesis of this claim is satisfied even with the weaker assumption of the Extension Lemma.
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Claim 37. Let G, H, F and X be as in Lemma 36. Assume (in addition to the hypotheses of Lemma 36)
that there exists a DH-degenerate ordering v1, . . . , vk of H such that F set = {v1, . . . , v`}. Then

|E(H, G, F, X)| ≤ Ck−lnk−lpw(H,F ),

where k = |V (H)|, n = |V (G)|, and p = e(G)
(

n
2

)−1
.

Proof. Consider a DH-degenerate ordering v1, . . . , vk of H with F set = {v1, . . . , vl}. We shall prove that

(*) for all l ≤ h ≤ k, we have
|E(Hh, G, F, X)| ≤ Ch−lnh−lpw(Hh,F ), (13)

where Hh = H [{v1, . . . , vh}].

We prove (*) by induction on h. The case in which h = l is clear. Now suppose that l < h ≤ k and that (13)
holds for smaller values of h. We wish to prove (13). To that end, first observe that, by our choice of the
ordering v1, . . . , vk of the vertices of H , we have degHh

(vh) ≤ DH . Therefore, as G ∈ BDD(C, DH), if we
let r = degHh

(vh), then any embedding of Hh−1 can be extended in at most Cnpr ways to an embedding
of Hh. Using the induction hypothesis and the fact that w(Hh, F ) = w(Hh−1, F ) + r, we have

|E(Hh, G, F, X)| ≤ Cnpr|E(Hh−1, G, F, X)|

≤ Cnpr × Ch−l−1nh−l−1pw(Hh−1,F ) = Ch−lnh−lpw(Hh,F ),

verifying (13). This completes the induction step and assertion (*) follows by induction. Our claim follows
on setting h = k in (13).

Proof of Lemma 36. To prove Lemma 36 we first show that there exist a D(H)-degenerate ordering v1, . . . , vk

of H such that F set = {v1, . . . , v`}. Then we apply Claim 37. We distinguish the following two cases.

Case 1: dH = 1 (H is a forest).
Since dH = 1, there exist a 1-degenerate ordering L = v1, . . . , vk of H . By hypothesis, |F | ≤ 2 = max{2, dH}.
If F set = ∅ then the Lemma is trivial. If F set = {vi}, we consider the new ordering

L′ = vi, v1, . . . , v̂i, . . . , vk,

where x̂ means that the element x is omitted in the listing of L′. Since L is a 1-degenerate ordering, it
follows that L′ is a 2-degenerate ordering.

If F set = {vi, vj}, let Lvi
and Lvj

be the set of vertices in the left neighborhood of vi and vj respectively
in the ordering L. Thus |Lvi

∪ Lvj
| ≤ 2 and |Lvi

∩ Lvj
| ≤ 1 because L is a 1-degenerate ordering. Moreover

if |Lvi
∩ Lvj

| = 1 then Lvi
∩ Lvj

= Lvi
∪ Lvj

. This leads to the following possibilities

(i) Lvi
∪ Lvj

= ∅.
Consider the ordering

L′ = vi, vj , v1, . . . , v̂i, . . . , v̂j , . . . , vk.

Since L = v1, . . . , vk is a 1-degenerate ordering and Lvi
∪ Lvj

= ∅, it is clear that L′ is a 1-degenerate
ordering with F set = {vi, vj}.

(ii) Lvi
∩ Lvj

6= ∅.
In this case, recall that Lvi

∩ Lvj
= Lvi

∪ Lvj
= {vs}. Now consider the ordering

L′ = vi, vj , vs, v1, . . . , v̂s, . . . , v̂i, . . . , v̂j , . . . , vk.

The vertex vs has 2 left neighbors (vi and vj) in the ordering L′. Furthermore, since H is a forest
(because dH = 1) and any vertex u /∈ {vi, vj , vs} is joined to at most one vertex in {vi, vj , vs}, the
left degree of u in the ordering L′ is at most 2. Consequently L′ is a 2-degenerate ordering of H
with F set = {vi, vj}.
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(iii) Lvi
∪ Lvj

6= ∅ and Lvi
∩ Lvj

= ∅.
Recall that |Lvi

∪ Lvj
| ≤ 2. Consider the ordering

L′ = vi, vj , v1, . . . , v̂i, . . . , v̂j , . . . , vk.

Thus the left degree of any x ∈ Lvi
∪ Lvj

changes from dx ≤ 1 in the ordering L to d′
x ≤ 2 in the

ordering L′. Furthermore the left degree of any other vertex y /∈ Lvi
∪Lvj

remains unchanged, that is
dy = d′y ≤ 1 in the ordering L′. Thus L′ is a 2-degenerate ordering of H with F set = {vi, vj}.

Case 2: dH ≥ 2.
By Remark 28, our graph H has a dH -degenerate ordering L. We now observe that if we relocate the vertices
in F at the beginning of that ordering, then we obtain a DH-degenerate ordering of the vertices of H . To
see this, let L′ = v1, . . . , vk be this ordering. If DH = ∆(H), then clearly any ordering is a DH -ordering.
Thus suppose that DH = 2dH . As in Definition 27, let Hh = H [{v1, . . . , vh}] (0 ≤ h ≤ k). Due to the
assumption l ≤ max{2, dH} = dH , the left degree of vh with respect to the ordering L′ is

d′vh
= degHh

(vh) ≤ l + dH ≤ 2dH = DH ,

This proves that there exist a D(H)-degenerate ordering L′ = v1, . . . , vk of H such that F = {v1, . . . , v`}.
Now our lemma follows from Claim 37.

The following notation will be used in the next corollary. Set

Eni(H, G) =
{
f ∈ E(H, G) : f is a non-induced embedding

}
.

Corollary 38. Let C > 1, k ≥ 1, and η > 0 be fixed and let p = p(n) = o(1) be a function of n. Then

there exists an integer n1 such that, for any graph H with k vertices and any graph G ∈ BDD(C, DH) with

|E(G)| ≤ pn2 and n = |V (G)| ≥ n1, we have

|Eni(H, G)| < ηnkpe, (14)

where and e = |E(H)|.

Proof. Let η, p, H and G be as in the statement of the corollary. The case in which k = 1 is clear, hence we
suppose k ≥ 2. To count non-induced embeddings of H in G, we select an edge {x, y} ∈ E(G) and a pair u,
v of distinct, non-adjacent vertices of H . By Lemma 36 applied to F = (u, v) and X = (x, y), the number
of embeddings f : V (H) → V (G) such that f(u) = x and f(v) = y is at most Ck−2nk−2pe.

Since {x, y} ∈ E(G) can be selected in at most pn2 ways, the ordered pair X can be selected in ≤ 2pn2

ways. Similarly, F can be selected in ≤ 2
(
k
2

)
ways. Therefore

|Eni(H, G)| ≤ 4pn2

(
k

2

)
Ck−2nk−2pe < 2k2Ck−2nkpe+1.

Since p = o(1) and C, k, and η > 0 are constants, there exists an integer n1 such that (14) holds for
all n ≥ n1, as required.

3.2.2 Proof of Lemma 33

This section is devoted to the proof of Lemma 33. We start by introducing some notation and terminology.

Let Gn be an n-vertex graph with p = e(Gn)
(

n
2

)−1
. For every integer r ≥ 1 and real ε > 0, we let

B(ε, r) =
{
X ∈ [V (Gn)]r : |NGn

(X) − npr| ≥ εnpr
}
,

and

Bstb(ε, r) =
{
X ∈ B(ε, r) : X is a stable set in Gn

}
.

A set B ⊆ V (Gn) will be said to be ε-bad if B ∈ Bstb(ε, r) for some r = |B| with 1 ≤ r ≤ dH .
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If Gn satisfies TUPLEε(dH), we have

|Bstb(ε, r)| ≤ |B(ε, r)| < ε

(
n

r

)

for all r ≤ dH .
Let us fix a triangle-free graph H as in the statement of Lemma 33. We shall also fix a dH -degenerate

ordering v1, . . . , vk of the vertices of H . As before, we let Hh = H [{v1, . . . , vh}] (1 ≤ h ≤ k). The next
definition introduces several important terms for our proof.

Definition 39. For (i)–(iii) below, we suppose that 1 < h ≤ k.

(i) An embedding f : V (Hh−1) → V (Gn) is clean if the set f
(
NHh

(vh)
)

is not ε-bad; i.e., f
(
NHh

(vh)
)

/∈
Bstb(ε, r) for any r with 1 ≤ r ≤ dH . Otherwise f is polluted. When we use the terms ‘clean’ and

‘polluted’, the value of ε will be clear from the context.

(ii) Set

Epoll(Hh−1, Gn) = {f ∈ E(Hh−1, Gn) : f is polluted}.

(iii) Finally, set

E ind
clean(Hh−1, Gn) = {f ∈ E(Hh−1, Gn) : f is clean and induced}.

Now we are ready to state another corollary of the Extension Lemma, Corollary 40 below. This corollary,
along with Corollary 38, will be the key ingredients in the proof of Lemma 33.

Corollary 40. Let ε > 0, C > 1, and k ≥ 4 be fixed. Suppose 1 < h ≤ k and set r = degHh
(vh). If

Gn ∈ BDD(C, DH) satisfies TUPLEε(dH), then

|Epoll(Hh−1, Gn)| ≤ εCh−r−1nh−1pe(Hh−1),

where p = e(Gn)
(
n
2

)−1
. In particular, for any η > 0, C > 1, and k, there is an ε > 0 that guarantees that

|Epoll(Hh−1, Gn)| ≤ ηnh−1pe(Hh−1).

Proof. By definition, an embedding f of Hh−1 in Gn is polluted if f
(
NHh

(vh)
)
∈ Bstb(ε, r). Fix an r-tuple

F such that F set = NHh
(vh). We have

Epoll(Hh−1, Gn) =
⋃

X

E(Hh−1, Gn, F, X),

where the union is taken over all r-tuples X such that X set ∈ Bstb(ε, r). Therefore

|Epoll(Hh−1, Gn)| ≤
∑

X

|E(Hh−1, Gn, F, X)|, (15)

where the sum is over the same r-tuples X . Since TUPLEε(dH) holds for Gn and r = degHh
(vh) ≤ dH ,

the number of r-tuples X that we are summing over in (15) is at most εnr. Observe also that NHh
(vh)

is a stable set in Hh, because Hh ⊆ H is triangle-free. We now apply Lemma 36 to deduce from (15)
that |Epoll(Hh−1, Gn)| is at most

εnr × Ch−r−1nh−r−1pe(Hh−1) = εCh−r−1nh−1pe(Hh−1),

and our corollary follows.

We are now ready to prove Lemma 33. We start by outlining the idea of the proof.

Proof strategy for Lemma 33. The proof uses an inductive argument. To keep the induction step working, we
need the Extension Lemma, Lemma 36. This lemma yields an upper bound on the number of those “copies”
of H in Gn that contain a fixed copy of H [F ] ⊆ H for some F ⊆ V (H).

Next, we use Corollary 38 to infer that most of the copies of H in Gn are induced copies. Then we further
restrict the domain to a certain class of embeddings, called clean embeddings, and show that the number of
polluted (i.e., not clean) embeddings is negligible. This enables us to reduce the proof of Lemma 33 to the
special case when the embeddings of H in Gn are clean and induced.
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Proof of Lemma 33. Throughout this proof, we suppose that C > 1 is a fixed constant and that Gn ∈

BDD(C, DH). We let p = e(Gn)
(
n
2

)−1
, and suppose that npdH ≥ npDH � 1. Recall that we have a fixed

dH -degenerate ordering v1, . . . , vk of the vertices of H , and that Hh = H [{v1, . . . , vh}] (1 ≤ h ≤ k).
We shall prove by induction on h that

(**) for all 1 ≤ h ≤ k and all δ > 0, there is ε > 0 such that if Gn satisfies TUPLEε(dH), then

|E(Hh, Gn)| ∼δ nhpe(Hh), (16)

as long as n is sufficiently large.

Note that (16) clearly holds for any δ > 0 for h = 1. Now suppose that 1 < h ≤ k and that (16)
holds for smaller values of h for all δ > 0. Let δ > 0 be given. We wish to show that (16) holds if Gn

satisfies TUPLEε(dH) for small enough ε and n is large enough.
We start by showing the lower bound, that is, |E(Hh, Gn)| > (1 − δ)nhpe(Hh). Let δ′ = min{δ/4, δ/2C},

and let ε′ = ε′(δ′) be the value of ε given by the induction hypothesis to guarantee that

|E(Hh−1, Gn)| ∼δ′ nh−1pe(Hh−1), (17)

as long as n is sufficiently large. Now put η = δ′/2. Corollary 38 tells us that if n is large enough, then

|Eni(Hh−1, Gn)| ≤ ηnh−1pe(Hh−1). (18)

Also, let ε′′ = ε′′(η) be the value of ε whose existence is guaranteed in Corollary 40 to ensure that

|Epoll(Hh−1, Gn)| ≤ ηnh−1pe(Hh−1). (19)

We now let ε = min{ε′, ε′′, δ/8}, and claim that this choice of ε will do. Our induction step is reduced to
proving this claim.

For future reference, observe that we have

(1 − 2δ′)(1 − 2ε) ≥ 1 − δ, (20)

(1 + δ′)(1 + ε) ≤ 1 +
δ

2
, (21)

and

δ′C ≤
δ

2
. (22)

Let r = degHh
(vh) ≤ dH . Note that then e(Hh−1) = e(Hh) − r. By our choice of ε, if n is sufficiently

large, then the number of embeddings in E(Hh−1, Gn) that are polluted or non-induced is

≤ 2ηnh−1pe(Hh−1) = δ′nh−1pe(Hh−1) = δ′nh−1pe(Hh)−r

(see (18) and (19)). Hence, by (17), the number |E ind
clean(Hh−1, Gn)| of clean induced embeddings of Hh−1

in Gn is such that

(1 − 2δ′)nh−1pe(Hh)−r < |E ind
clean(Hh−1, Gn)| < (1 + δ′)nh−1pe(Hh)−r. (23)

Given f ′ ∈ E ind
clean(Hh−1, Gn), we may estimate from below the number of embeddings f ∈ E(Hh, Gn) that

extend f ′ as follows. Since f ′ is clean, by definition f ′(NHh
(vh)) /∈ Bstb(ε, r). Equivalently, either

(a) f ′(NHh
(vh)) is not a stable set in G, or

(b) |NGn

(
NHh

(vh)
)
− npr| < εnpr holds.
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Since H is triangle-free, the set NHh
(vh) is a stable set in Hh. Since f ′ is induced, the set f ′(NHh

(vh))
is also a stable set and consequently (a) fails to hold. Thus (b) must hold, that is,

|NGn

(
NHh

(vh)
)
− npr| < εnpr. (24)

Note that, to obtain an extension f ∈ E(Hh, Gn) of f ′, we must simply select f(vh) in NGn
(f ′(NHh

(vh))) \
f ′(V (Hh−1)). Consequently, the number of extensions of f ′ to embeddings of Hh in Gn is at least

|NGn

(
f ′(NHh

(vh))
)
\ f ′

(
V (Hh−1)

)
|

≥ (1 − ε)npr − (h − 1) ≥ (1 − 2ε)npr, (25)

where we used (24), the fact that npr ≥ npdH � 1, and that n is large. Combining (20), the lower bound
in (23), and (25), we obtain that

|E(Hh, Gn)| > (1 − 2δ′)nh−1pe(Hh)−r(1 − 2ε)npr ≥ (1 − δ)nhpe(Hh). (26)

Now we need to show that |E(Hh, Gn)| < (1 + δ)nhpe(Hh). Fix f ′ ∈ E(Hh−1, Gn). The number of
extensions of f ′ to embeddings of Hh in Gn is bounded from above by

|NGn

(
f ′(NHh

(vh))
)
|. (27)

If, furthermore, f ′ ∈ E ind
clean(Hh−1, Gn), then we know that (24) holds and hence the quantity in (27) is ≤

(1 + ε)npr. Combining this fact with the upper bound in (23) and recalling (21), we obtain that the number
of embeddings f ∈ E(Hh, Gn) whose restrictions to V (Hh−1) are in E ind

clean(Hh−1, Gn) is

< (1 + δ′)nh−1pe(Hh)−r(1 + ε)npr

= (1 + δ′)(1 + ε)nhpe(Hh) ≤

(
1 +

δ

2

)
nhpe(Hh). (28)

We already know that |E(Hh−1, Gn)\E ind
clean(Hh−1, Gn)| ≤ δ′nh−1pe(Hh)−r. Since r = degGn

(vh) ≤ dH ≤ DH

and Gn ∈ BDD(C, DH), each such embedding f ′ gives rise to ≤ Cpnr embeddings f ∈ E(Hh, Gn). Therefore,
the number of embeddings f ∈ E(Hh, Gn) whose restrictions to V (Hh−1) are not in E ind

clean(Hh−1, Gn) is,
by (22),

≤ δ′nh−1pe(Hh)−r × Cnpr ≤
δ

2
nhpe(Hh). (29)

From (28) and (29), we deduce that

|E(Hh, Gn)| < (1 + δ)nhpe(Hh). (30)

Inequalities (26) and (30) complete our induction step, and hence (**) follows by induction. Lemma 33
follows on taking h = k in (**).

3.2.3 Proof of Theorem 16

In this short section, we observe that we have already done all the work to prove Theorem 16. Indeed, let H
and {Gn}∞n=1 be as in the statement of Theorem 16. We first observe that we may boost hypothesis (iii)
in the statement of that theorem to TUPLE(dH), by applying Lemma 32. But then we are in condition to
apply Lemma 33. We leave the details to the reader.

3.3 Remarks about Theorem 26 (the directed case)

We omit the proof of Theorem 26 (stated in Section 2.2) and make a few remarks about its connection to
the undirected case.

Theorem 26 is the directed version of the Embedding Lemma (Theorem 16). Its proof goes along the
lines of the the proof of the Embedding Lemma. That is, it uses the directed versions of the Extension
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Lemma (Lemma 36), Lemma 32, Lemma 33 and Corollary 38. However the proofs of the directed versions
of the Extension Lemma, Lemma 33 and Corollary 38 are very similar to the proofs for the undirected case.
Thus we omit those proofs.

We shall rather state and prove Lemma 41, which is the directed analogue of Lemma 32. Then at the
end of this section we briefly say how to deduce Lemma 32 from Lemma 41.

We follow the same notation as in the beginning of Section 2.2. Let ~G = (V, ~E) be a digraph, π =
(π1, . . . , πr) ∈ {+,−}r, and (u1, . . . , ur) ∈ V r. We let dπ(u1, . . . , ur) = |Nπ(u1, . . . , ur)|, where

Nπ(u1, . . . , ur) = {w ∈ V : ∀i ∈ [r], (ui, w) ∈ ~E if πi = +

and (w, ui) ∈ ~E if πi = −}. (31)

Lemma 41. Let t ≥ 2 be an integer and let ~G = (V, ~E) be a digraph on n vertices satisfying the following

conditions:

(a) for all but o(n) vertices u ∈ V ,

d+(u) =
1

2
pn(1 + o(1)),

(b)
∑

(u,v)∈V 2

(
d++(u, v)

)2
= n2

(
p2n

4

)2

(1 + o(1)).

If p = p(n) � n−1/t and ~G ∈
−−−→
BDD(C, 2), then, for all 2 ≤ r ≤ t, for all π ∈ {+,−}r, and for all but o(nr)

r-tuples (u1, . . . , ur) ∈ V r, we have

dπ(u1, . . . , ur) =
1

2r
prn(1 + o(1)).

Proof. First we show that

(c) for all but o(n) vertices u ∈ V , we have

d−(u) =
1

2
pn(1 + o(1)).

To that end, we first observe that ∑

a∈V

d−(a) =
∑

u∈V

d+(u). (32)

Condition (a) above and the fact that all vertices have degree ≤ Cpn imply that

∑

u∈V

d+(u) = n
(pn

2

)
(1 + o(1)) + o(n)Cpn = n

(pn

2

)
(1 + o(1)). (33)

Moreover, by the Cauchy–Schwarz inequality and (b) above, we have

∑

a∈V

d−(a)2 =
∑

(u,v)∈V 2

d++(u, v) ≤ n
{ ∑

(u,v)∈V 2

d++(u, v)2
}1/2

≤ n
(pn

2

)2

(1 + o(1)). (34)

Lemma 29 and (32), (33), and (34) now imply that (c) above does indeed hold.
We may deduce from (c) that

∑

(u,v)∈V 2

d++(u, v) =
∑

a∈V

d−(a)2 ≥ n2

(
p2n

4

)
(1 + o(1)). (35)

Lemma 29, condition (b) and (35) now imply that
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(d) for all but o(n2) pairs (u, v) ∈ V 2, we have

d++(u, v) =
1

4
p2n(1 + o(1)).

Similarly, we may deduce that

(e) for all but o(n2) pairs (u, v) ∈ V 2, we have

d−−(u, v) =
1

4
p2n(1 + o(1)).

Indeed, this is a consequence of Lemma 29 and the identities

∑

(u,v)∈V 2

d−−(u, v) =
∑

a∈V

d+(a)2

and ∑

(u,v)∈V 2

d−−(u, v)2 =
∑

(a,b)∈V 2

d++(a, b)2.

Having established the auxiliary facts (c)–(e), we are now in position to verify Lemma 41. For π =
(π1, . . . , πr) ∈ {+,−}r, let P (π) = |{i : πi = +}| and Q(π) = r−Pπ . We write u = (u1, . . . , ur) for a general
element in V r. We have ∑

u∈V r

dπ(u) =
∑

a∈V

d−(a)P (π)d+(a)Q(π). (36)

Condition (a) and property (c) deduced above and the fact that all vertices have degree ≤ Cpn allow us to
conclude that the right-hand side of (36) is ∼ n(pn/2)r =∼ nr(prn/2r), so that

∑

u∈V r

dπ(u) = nr

(
1

2r
prn

)
(1 + o(1)). (37)

We now observe that ∑

u∈V r

dπ(u)2 =
∑

(a,b)∈V 2

(
d−−(a, b)

)P (π)(
d++(a, b)

)Q(π)
. (38)

Properties (d) and (e) deduced above and the fact that all pairs of vertices have joint degree ≤ Cp2n allow
us to conclude that the right-hand side of (38) is ∼ n2(p2n/4)r =∼ nr(prn/2r)2, so that

∑

u∈V r

dπ(u)2 = nr

(
1

2r
prn

)2

(1 + o(1)). (39)

Finally, Lemma 29 and (37) and (39) imply that for all but o(nr) r-tuples u ∈ V r, we have

dπ(u) =
1

2r
prn(1 + o(1)),

which concludes the proof of Lemma 41.

Now we present a sketch of the proof of Lemma 32 (introduced in Section 3), based on Lemma 41. We
start by restating Lemma 32 in the following equivalent form.

Lemma 42. Suppose t ≥ 2 and C > 1 are constants and p = p(n) satisfies npt � 1. Let {Gn}∞n=1 be a

sequence of graphs with Gn ∈ BDD(C, 2) for all n and |E(Gn)| = (1 + o(1))p
(

n
2

)
. If

(a) for all but o(n) vertices u ∈ V (Gn),

degGn
(u) = pn(1 + o(1)),
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(b) for all but at most o(n2) pairs {x1, x2} ⊆ V (Gn),

∣∣NGn
(x1) ∩ NGn

(x2)
∣∣ = p2n(1 + o(1)),

then, for all r ∈ [t], all but at most o(nr) r-element sets {x1, . . . , xr} ⊆ V (Gn) are such that

∣∣NGn
(x1) ∩ · · · ∩ NGn

(xr)
∣∣ = prn(1 + o(1)).

Sketch of the proof of Lemma 42. Lemma 42 follows from Lemma 41. Suppose we are given a graph Gn as
above; we then randomly orient its edges to get ~Gn. One can easily show that the hypothesis of Lemma 41
holds almost surely for ~Gn, that is, with probability tending to 1 as n → ∞. Finally, note that if ~Gn satisfies
the conclusion of Lemma 41, then Gn satisfies the conclusion of Lemma 42.

3.4 Proof of Theorem 24

Throughout this section, H will be a (not necessarily triangle-free) graph on k vertices and e edges. Recall
that we denote the set of embeddings of H in a graph G by E(H, G). The set of induced embeddings of H
in G will be denoted by E ind(H, G), and the set of non-induced embeddings of H in G will be denoted
by Eni(H, G).

To prove Theorem 24, we need to prove the implications

NSUB(k + 1) ⇒ INDTUP(k − 1)

and
INDTUP(k − 1) ⇒ NSUB(k),

for all appropriate sequences of graphs {Gn}∞n=1. The implications above will be proved in Lemmas 43 and 45
below.

Lemma 43. Let k ≥ 3 and C > 1 be fixed. Let p = p(n) = o(1) be a function of n satisfying npk−1 � 1.
Then

NSUB(k + 1) ⇒ INDTUP(k − 1)

for any sequence of graphs {Gn}∞n=1 with p = p(n) = e(Gn)
(
n
2

)−1
and Gn ∈ BDD(C, k − 1) for all n.

Proof. We shall be somewhat sketchy in this proof. Let the sequence of graphs {Gn}∞n=1 be as in the
statement of our lemma. Suppose that INDTUP(k − 1) fails to hold. We will show that NSUB(k + 1) fails
to hold as well. By definition of INDTUP(k − 1), we know that there are integers 1 ≤ r < k and 0 ≤ t ≤

(
r
2

)

for which we have
|Badind(r, t)| 6= o(nrpt), (40)

where
Badind(r, t) = {X ⊆ V (Gn) : |X | = r, e(X) = t, and |N(X) − npr| 6= o(npr)}.

Given a graph F with r vertices and t edges, let E(F, Gn; Badind(r, t)) be the set of induced embeddings f
of F in Gn with the image f(V (F )) of f in the family Badind(r, t). Formally,

E(F, Gn; Badind(r, t)) = {f ∈ E ind(F, Gn) : f(V (F )) ∈ Badind(r, t)}.

Observe that there are at most
((r

2)
t

)
graphs on r vertices and t edges that can be induced on X ∈ Badind(r, t).

Hence we deduce from (40) that there is a graph F with r vertices and t edges such that

|E(F, Gn; Badind(r, t))| 6= o(nrpt). (41)

Unwinding the definitions, we see that (41) means that the number of induced embeddings f of F in Gn

failing to satisfy
|N(f(V (F )))| ∼ npr

fails to be o(nrpt).
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Suppose now that the vertices of F are u1, . . . , ur. Let ur+1 and ur+2 be two new vertices. We let F1

be the graph obtained from F by adding ur+1 to F and joining it to all vertices in F . Moreover, we let F2

be the graph obtained from F1 by adding ur+2 to F1 and joining it to all vertices in F . Note that ur+1

and ur+2 are not adjacent in F2. Finally, we let F3 be obtained from F2 by adding the edge {ur+1, ur+2}.
For convenience, put F0 = F .

In Claim 44 below, we prove that

|E ind(Fi, Gn)| 6∼ n|V (Fi)|p|E(Fi)|,

for some i, 0 ≤ i ≤ 3. Consequently NSUB(k + 1) fails, which is a contradiction. This contradiction proves
Lemma 43.

Claim 44. For some i, 0 ≤ i ≤ 3, we have

|E ind(Fi, Gn)| 6∼ n|V (Fi)|p|E(Fi)|.

Proof. Assume for a contradiction that the number of embeddings of Fi in Gn (0 ≤ i ≤ 3) is ∼ n|V (Fi)|p|E(Fi)|.
We will show that

|E(F, Gn; Badind(r, t))| = o(nrpt),

which would contradict (41).
Since p = o(1), we may deduce from Corollary 38 that the number of induced embeddings |E ind(Fi, Gn)|

of Fi in Gn satisfies
|E ind(Fi, Gn)| ∼ n|V (Fi)|p|E(Fi)|, (42)

for all 0 ≤ i ≤ 3.
For each induced embedding f of F to Gn, put

d(f) = |N(f(V (F )))|;

that is, d(f) is the number of joint neighbors of the vertices in the image of f . Clearly, we have

|E ind(F1, Gn)| =
∑

{d(f) : f ∈ E ind(F, Gn)}. (43)

Moreover, by (42) and the fact that p = o(1), we have that

|E ind(F2, Gn)| ∼ |E ind(F2, Gn)| + |E ind(F3, Gn)|

=
∑

{d(f)(d(f) − 1): f ∈ E ind(F, Gn)}. (44)

Note that (42) and (43) imply that
∑

{d(f) : f ∈ E ind(F, Gn)} ∼ nr+1pt+r ∼ |E ind(F, Gn)|npr. (45)

Since npr ≥ npk−1 � 1, we may deduce from (45) that

∑

f

d(f)2 ≥
1

|E ind(F, Gn)|

(∑

f

d(f)
)2

�
∑

f

d(f), (46)

where all the sums above are over f ∈ E ind(F, Gn). Combining (42), (44), and (46), we deduce that
∑

{d(f)2 : f ∈ E ind(F, Gn)} ∼ nr+2pt+2r ∼ |E ind(F, Gn)| (npr)
2
. (47)

In view of (45) and (47), we may now simply apply Lemma 29 to deduce that

d(f) = |N(f(V (F )))| ∼ npr

for (1 − o(1))|E ind(F, Gn)| ∼ nrpt embeddings f ∈ E ind(F, Gn). This means that

|E(F, Gn; Badind(r, t))| = o(nrpt).

However, as observed above, this contradicts (41). Thus the claim holds.
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We now prove the implication
INDTUP(k − 1) ⇒ NSUB(k),

for all appropriate sequences of graphs {Gn}∞n=1. We in fact give a more precise assertion in Lemma 45
below.

Lemma 45. Let δ > 0, C > 1 and k ≥ 3 be fixed. Let H be a (not necessarily triangle-free) graph on k
vertices, and let p = p(n) = o(1) be a function of n satisfying npDH � 1. Then there exist ε > 0 and an

integer n3 for which the following holds. If a sequence of graphs {Gn}∞n=1 is such that, for all n,

(i) Gn ∈ BDD(C, DH),

(ii) p = p(n) = e(Gn)
(
n
2

)−1
,

(iii) INDTUPε(dH) holds for Gn,

then the number of embedding of H in Gn is

N(H, Gn) ∼δ nkpe

for all n ≥ n3, where e = |E(H)|.

Proof. The proof of this lemma is very similar to the proof of Lemma 33, and hence we shall only sketch an
informal proof.

We shall assume throughout that C > 1 and k ≥ 3 are fixed constants and that Gn ∈ BDD(C, DH) for
all n, where {Gn}∞n=1 is as in the statement of our lemma. Let us also fix a graph H as in the statement of
our lemma. As in the proof of Lemma 33, we shall also fix a dH -degenerate ordering v1, . . . , vk of the vertices
of H . As before, if 1 ≤ h ≤ k, we shall write Hh for the graph H [{v1, . . . , vh}] induced by {v1, . . . , vh} in H .

We shall prove by induction on h that

(†) for all 1 ≤ h ≤ k, if property INDTUP(dH) holds for {Gn}∞n=1, then

|E(Hh, Gn)| ∼ nhpe(Hh). (48)

Note that (†) is trivially true for h = 1. Now suppose that 1 < h ≤ k and that (†) holds for smaller values
of h. We need to show that (48) holds assuming that INDTUP(dH) holds.

By Corollary 38, we know that

|Eni(Hh−1, Gn)| = o(nh−1pe(Hh−1)). (49)

From the induction hypothesis and (49), we may deduce that

|E ind(Hh−1, Gn)| ∼ nh−1pe(Hh−1). (50)

We now need to introduce some notation. Let r = degHh
(vh), and suppose that the neighborhood NHh

(vh)
of vh in Hh induces t edges in Hh. Clearly, NHh

(vh) induces t edges in Hh−1 as well. As in the proof of
Lemma 43, we put

Badind(r, t) = {X ⊆ V (Gn) : |X | = r, e(X) = t, and |N(X) − npr| 6= o(npr)}.

In words, Badind(r, t) is the family of the r-element sets of vertices of Gn that induce t edges in Gn and fail

to have a joint neighborhood of cardinality ∼ npr.
Since r = degHh

(vh) ≤ dH and we are assuming that INDTUP(dH) holds, we have

|Badind(r, t)| = o(nrpt). (51)

We now let

E(Hh−1, Gn; Badind(r, t)) = {f ∈ E ind(Hh−1, Gn) : f(NHh
(vh)) ∈ Badind(r, t)}.

We will need the following claim, Claim 46. We delay its proof until the end of this section.
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Claim 46. We have

|E(Hh−1, Gn; Badind(r, t))| = o(nh−1pe(Hh−1)). (52)

Assuming Claim 46, we proceed with the proof of Lemma 45.
If f is an embedding of Hh−1 in Gn, let us write d(f) for the number of extensions of f to embeddings

of Hh in Gn. Note that

(‡) if
f ∈ E ind(Hh−1, Gn) \ E(Hh−1, Gn; Badind(r, t)), (53)

then
d(f) ∼ npr. (54)

Observation (‡), relation (50), and Claim 46 imply that

|E(Hh, Gn)| & nh−1pe(Hh−1) × npr = nhpe(Hh). (55)

We now need to estimate |E(Hh, Gn)| from above. Note that any embedding f of Hh−1 in Gn extends
to ≤ Cnpr embeddings of Hh in Gn, because we are assuming that Gn ∈ BDD(C, DH) and r = degHh

(vh) ≤
dH ≤ DH . In particular, if

f ∈ Eni(Hh−1, Gn) ∪ E(Hh−1, Gn; Badind(r, t)), (56)

then d(f) ≤ Cnpr. Inequality (49) and Claim 46 imply that the number of embeddings f as in (56)
is o(nh−1pe(Hh−1)). It follows that the number of embeddings of Hh in Gn that extend embeddings f as
in (56) is o(nhpe(Hh)).

Finally, we observe that if an embedding f ∈ E(Hh−1, Gn) is not as in (56), then it must be as in (53).
Recalling (‡), we see that the total number of embeddings of Hh in Gn is ∼ nhpe(Hh). The proof of the
induction step is therefore complete, and hence (†) follows by induction. Naturally, Lemma 45 follows by
setting h = k in (†).

Now we present the proof of Claim 46, which is a slight extension of the proof of Corollary 40.

Proof of Claim 46. By definition

E(Hh−1, Gn; Badind(r, t))

= {f ∈ E ind(Hh−1, Gn) : f(NHh
(vh)) ∈ Badind(r, t)}.

Fix an r-tuple F such that F set = NHh
(vh). By the above definition and the fact that Gn satisfies INDTUP(k−

1), we have

|E(Hh−1, Gn; Badind(r, t))| =
∑

X

|E(Hh−1, Gn, F, X)|, (57)

where the sum is over all r-tuples X such that X set ∈ Badind(r, t). By (51), the number of r-tuples X that
we are summing over in (57) is at most

r! × o(nrpt) = o(nrpt).

For each r-tuple X , we apply the Extension Lemma (Lemma 36) to

E(Hh−1, Gn, F, X)

and deduce from (57) that

|E(Hh−1, Gn; Badind(r, t))| ≤ o(nrpt) × C(h−1)−rn(h−1)−rpe(Hh−1)−t

= o(nh−1pe(Hh−1)). (58)

This concludes the proof of Claim 46.
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4 Auxiliary facts and related work

4.1 General facts

We have used Facts 47 and 48 given below. Recall that, for two graphs X and Y , the set of all embeddings
of X in Y is denoted by E(X, Y ).

Fact 47. Let k ≥ 1 be a fixed integer. For any sequence of graphs {Gn}∞n=1, we have

NSUB(k + 1) ⇒ NSUB(k).

Proof. Suppose {Gn}∞n=1 satisfies NSUB(k + 1) and let p = p(n) = |E(Gn)|
(

n
2

)−1
. To prove this fact, we

have to show that, for any graph H on k vertices, we have

|E(H, Gn)| = (1 + o(1))nkpe, (59)

where e = |E(H)|. Given a graph H as above we construct H+ where V (H+) = V (H) ∪ {u} and E(H+) =
E(H). By definition of H+, it follows that

|E(H+, Gn)| = N(H, Gn)(n − k). (60)

By hypothesis, we know that {Gn}∞n=1 satisfies NSUB(k + 1). Thus

|E(H+, Gn)| = (1 + o(1))nk+1pe. (61)

Combining (60) and (61), we obtain (59).

Similarly, we may prove the following simple fact.

Fact 48. Let k ≥ 1 be a fixed integer. For any sequence of graphs {Gn}∞n=1, we have

TFSUB(k + 1) ⇒ TFSUB(k).

4.2 Proof of Proposition 6

In this section, we shall sketch the proof of Proposition 6(A) and we shall prove Proposition 6(B) using a
construction due to Alon [3].

Proof of Proposition 6 (A). We only outline the proof of Proposition 6(A), because a similar result is proved
in [14] (see Theorem B′ in [14]). The graphs Gi satisfying properties (i) and (ii) above can be constructed
from sparse random graphs whose triangles have been destroyed by the removal of a small fraction of the
edges. Replacing each vertex of such a triangle-free “random like graph” by a stable set of appropriate
cardinality and each edge by a complete bipartite graph yields suitable graphs Gi.

The proof of Proposition 6(B) is based on a family of graphs constructed by Alon [3].

Construction of Alon’s graph: Let k > 1 be an integer not divisible by 3 and let Fk = GF(2k) be the
Galois field with 2k elements. Depending on the context, we will think of the elements of Fk as polynomials
over GF(2) or as binary vectors of length k (whose entries are the coefficients of the corresponding polynomial
representations). If u and v are two vectors, we will denote their concatenation by u ◦ v.

For any α ∈ Fk−{0}, we put the vector α in W0 if the constant term of the polynomial α7 is 0. Otherwise
we put α in W1. Let Γ = (Z2)3k be the Abelian group with elements the binary vectors of length 3k. Let
U0 = {w0 ◦ w3

0 ◦ w5
0 : w0 ∈ W0} and U1 = {w1 ◦ w3

1 ◦ w5
1 : w1 ∈ W1} be subsets of Γ. Note that

|U0| = |W0| = 2k−1 − 1 and |U1| = |W1| = 2k−1.

In the following, we will use bold letters to denote vectors of length 3k to distinguish them from vectors of
length k.
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The Alon graph G = G(Γ) is defined to be the Cayley graph on Γ with generating set

S = U0 + U1 = {u0 + u1 : u0 ∈ U0, u1 ∈ U1} ⊆ Γ.

In other words V (G) = Γ = (Z2)3k and x, y ∈ V (G) form an edge in G if and only if x + y ∈ S. Let M0

(resp. M1) be the 3k × (2k−1 − 1) (resp. 3k × 2k−1) matrix whose columns are the vectors in U0 (resp. U1).
Consider the matrix M = [M0, M1]. It turns out that M is the parity check matrix of a BCH code of
designed distance 7. Alon showed that the graph G has the following properties:

(a) G is triangle-free,

(b) G is d = |S| = 2k−1(2k−1 − 1)-regular,

(c) The second largest eigenvalue of the adjacency matrix of G has size ≤ 9 · 2k + 3 · 3k/2 + 1/4 = Θ(2k).

Roughly speaking, properties (a) and (b) follow from the fact any 6 columns in M are linearly independent
over GF(2). Property (c) is much more delicate, and depends on the Carlitz–Uchiyama bound for the
Hamming weight of dual code words of BCH codes. We refer the reader to Alon [3] for details.

Proof of Proposition 6 (B). From the above discussion, it follows that for each k > 1 not divisible by 3, we
have an Alon graph G with the properties (a), (b) and (c) listed above. Let {Gi}∞i=1 be the family of all such
graphs G (ordered according to |V (Gi)|).

We prove Proposition 6(B) by showing that the family {Gi}∞i=1 satisfies (i), (ii), and (iii) of Proposi-
tion 6(B).

Observe that (i) of Proposition 6(B) is simply (a) above. Next we prove (ii) of Proposition 6(B). For
each Gi, we have (by definition) n = |V (Gi)| = 23k and d = pn = 2k−1(2k−1 − 1). Thus, letting k → ∞
yields

p =

(
1

4
+ o(1)

)
n−1/3. (62)

Let A =
(
ax,y

)
x,y∈V (Gi)

denote the 0–1 adjacency matrix of the graph Gi, with 1 denoting edges. Let λj

(1 ≤ j ≤ n = 23k) be the eigenvalues of A and adjust the notation so that λ1 ≥ |λ2| ≥ · · · ≥ |λn|. It follows
from properties (b) and (c) above that

λ1 = d = 2k−1(2k−1 − 1) and |λ2| = Θ(2k). (63)

Hence {Gi}∞i=1 satisfies EIG. By Fact 3 in [8], we have EIG ⇒ DISC. Consequently {Gi}∞i=1 satisfies DISC
as well. Now it remains to show that {Gi}∞i=1 satisfies property TUPLE(2). Assume for a moment that
{Gi}∞i=1 satisfies property EIG(4), defined as follows:

EIG(4):
n∑

i=1

|λi|4 = (1 + o(1))p4n4.

Then, by Fact 7 in [8], {Gi}∞i=1 must also satisfy CIRCUIT(4), which is defined as follows:

CIRCUIT(4): The number of labeled circuits of length 4 is (1 + o(1))p4n4.

This leads to the following fact.

Fact 49. EIG(4) ⇒ TUPLE(2) for the graph sequence {Gi}∞i=1.

Proof. Recall that EIG(4) ⇒ CIRCUIT(4) for the graph sequence {Gi}∞i=1 (Fact 7 in [8]). Thus, we may
assume that CIRCUIT(4) holds for {Gi}∞i=1. For n = |V (Gi)|, then as seen above, deg(v) = pn for all
v ∈ V (Gi).

Let #{Cir(4) ⊆ Gi} be the number of labeled circuits of length 4 and #{Cyc(4) ⊆ Gi} the number of
labeled cycles of length 4 in Gi. Denote by Wd the number of degenerate labeled circuits of length 4 in Gi,
i.e., labeled closed walks using exactly 3 or exactly 2 distinct vertices. Observe that,

#{Cir(4) ⊆ Gi} = #{Cyc(4) ⊆ Gi} + Wd. (64)
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Note that the degenerate labeled circuits of length 4 correspond to paths of length 2 and edges. Hence, since
np2 � 1, we have

Wd =
∑

v∈V (Gi)

(
4 ·

(
deg(v)

2

)
+ deg(v)

)

= 4n ·

(
pn

2

)
+ n · pn < 2n3p2 = o(n4p4). (65)

Since CIRCUIT(4) holds for {Gi}∞i=1, we have

#{Cir(4) ⊆ Gi} = (1 + o(1))n4p4. (66)

Thus, (64), (65) and (66) imply

#{Cyc(4) ⊆ Gi} = #{Cir(4) ⊆ Gi} − Wd = (1 + o(1))n4p4. (67)

Hence, {Gi}∞i=1 satisfies CYCLE(4). Finally, by Fact 31 in Section 3.2, we have CYCLE(4) ⇒ TUPLE(2).
Thus, {Gi}∞i=1 satisfies TUPLE(2) and Fact 49 is proved.

By Fact 49 above, it follows that, in order to show that {Gi}∞i=1 satisfies TUPLE(2), it is enough to show
that {Gi}∞i=1 satisfies EIG(4).

By (63), there exists a constant C such that

λ4
1 = d4 = p4n4 (68)

and
n∑

i=2

|λi|
4 < n(C2k)4 = C423k · 24k = o(p4n4), (69)

where in (69) we used that p4n4 = 28k. By (68) and (69), our graph sequence {Gi}∞i=1 satisfies property
EIG(4). This concludes the proof of (ii) of Proposition 6(B).

To complete our proof of Proposition 6(B), it remains to show that the graphs Gi satisfy (iii). Since this
will take some work, we state this fact as a separate lemma (see Lemma 50 below).

Lemma 50. Gi ∈ BDD(128, 2) for all i ≥ 1.

We will use the following simple fact in the proof of Lemma 50.

Fact 51. Suppose a1 and a2 ∈ Fk with a1 6= 0 are given, and consider the system of equations

{
x + y = a1

x3 + y3 = a2.
(70)

System (70) has at most two pairs of solutions in Fk, namely (x, y) = (α, β) and (x, y) = (β, α) for some α
and β ∈ Fk with β = α + a1 6= α.

Proof. By substituting x + a1 for y in the second equation of (70), we obtain the quadratic equation a1x
2 +

a2
1x + a3

1 + a2 = 0, which has at most two solutions. If α is a solution to the latter equation, then so
is β = α + a1, as a simple calculation shows. This implies that the solutions to (70) are as claimed.

Proof of Lemma 50. Since (by definition) Gi is d-regular, where d = pn, we have degGi
(x) = pn for all

x ∈ V (Gi). Thus, it remains to show that for any two vertices x 6= y in V (Gi), we have

|NGi
(x) ∩ NGi

(y)| ≤ 128p2n.

For x 6= y ∈ V (Gi), the vertex t ∈ V (Gi) belongs to N(x)∩N(y) if and only if there exist s, s′ ∈ S such
that x + t = s and y + t = s′, or, equivalently, x + y = s + s′. Consequently,

|NGi
(x) ∩ NGi

(y)| = |{(s, s′) ∈ S × S : s + s′ = x + y}|.
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Set a = x + y = a1 ◦ a2 ◦ a3 where a1, a2, and a3 are in Fk. Let s = (w0 + w1) ◦ (w3
0 + w3

1) ◦ (w5
0 + w5

1) and
s′ = (v0 + v1) ◦ (v3

0 + v3
1) ◦ (v5

0 + v5
1) where v0, w0 ∈ W0 and v1, w1 ∈ W1. Thus the equation x + y = s + s′

can be written as




w0 + w1 + v0 + v1 = a1

w3
0 + w3

1 + v3
0 + v3

1 = a2

w5
0 + w5

1 + v5
0 + v5

1 = a3.

(71)

For any f ∈ Fk, let

f̃ = f ◦ f3 ◦ f5 =




f
f3

f5


 .

We define
P =

{
(w̃0 + w̃1, ṽ0 + ṽ1) : w0, v0 ∈ W0 and w1, v1 ∈ W1 satisfy (71)

}
. (72)

Observe that
|NGi

(x) ∩ NGi
(y)| = |{(s, s′) ∈ S × S : s + s′ = x + y}| = |P |.

For each z0 ∈ W0, set
P (z0) =

{
(w̃0 + w̃1, ṽ0 + ṽ1) ∈ P : w0 = z0

}
.

Since any 6 columns of M are linearly independent, a moment’s thought shows that the sets P (z0) (z0 ∈ W0)
are pairwise disjoint. Therefore

|NGi
(x) ∩ NGi

(y)| = |P | =
∑

z0∈W0

|P (z0)|. (73)

Let
T =

{
z0 ∈ W0 : |P (z0)| > 2

}
. (74)

We now state a claim that will be used to finish the proof of Lemma 50.

Claim 52. With the same notation as above, the following holds.

(1 ) |P (z0)| ≤ |W1| = 2k−1 for all z0 ∈ W0.

(2 ) |T | ≤ 2.

The proof of Claim 52 is postponed to the end of Section 4.2. Now we are ready to finish the proof of
Lemma 50. By (73) and Claim 52, we have

|P | =
∑

z0∈W0

|P (z0)| =
∑

z0∈T

|P (z0)| +
∑

z0∈W0\T

|P (z0)|

≤ |T | · 2k−1 + |W0| · 2 ≤ 2 · 2k−1 + (2k−1 − 1) · 2 < 4 · 2k−1.

Now, it follows from (73) that

|NGi
(x) ∩ NGi

(y)| = |P | < 4 · 2k−1 ≤ 128p2n,

because, as a quick calculation shows, p2n = 2k−4(1 − 1/2k−1)2 ≥ 2k−6. This concludes the proof of
Lemma 50, assuming Claim 52.

It remains to prove Claim 52.
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Proof of Claim 52. We shall first prove (1) of Claim 52. Let z0 ∈ W0. If |P (z0)| ≤ 1 then we are done.

Otherwise there exist at least two pairs
(
z̃0 + w̃′

1, ṽ
′
0 + ṽ′1

)
,
(
z̃0 + w̃′′

1 , ṽ′′0 + ṽ′′1
)
∈ P (z0). From the definition

of P (z0) ⊆ P and (71), it follows that

w̃′
1 + ṽ′0 + ṽ′1 = w̃′′

1 + ṽ′′0 + ṽ′′1 . (75)

Since any 6 columns of the matrix M are linearly independent (see Alon [3]), each element in
{
w̃′

1, w̃
′′
1 , ṽ′0, ṽ

′′
0 , ṽ′1, ṽ

′′
1

}

must occur an even number of times. Since W0 ∩ W1 = ∅, {v′0, v
′′
0 } ⊆ W0 and {v′1, v

′′
1 , w′

1, w
′′
1} ⊆ W1,

we have ṽ′0 = ṽ′′0 . In other words if z0 is fixed then ṽ0 = ṽ0(z0) is uniquely determined for all pairs
(z̃0 + w̃1, ṽ0 + ṽ1) ∈ P (z0). By the definition of P (z0) ⊆ P , we have

z̃0 + w̃1 + ṽ0(z0) + ṽ1 =




a1

a2

a3


 . (76)

We distinguish the following two cases.

Case 1: z̃0 + ṽ0(z0) =
(

a1

a2

a3

)
.

In this case, equation (76) implies that w1 = v1. Hence the elements of P (z0) are of the form (z̃0 +

w̃1, ṽ0(z0) + w̃1) where w1 ∈ W1 is arbitrary. Thus |P (z0)| ≤ |W1| = 2k−1. Hence (1) of Claim 52 holds in
this case.

Case 2: z̃0 + ṽ0(z0) 6=
(

a1

a2

a3

)
.

Set



a′
1

a′
2

a′
3


 =




a1

a2

a3


 + z̃0 + ṽ0(z0) 6=




0
0
0


 . (77)

Then (76) implies that w1 + v1 = a′
1, w3

1 + v3
1 = a′

2, and w5
1 + v5

1 = a′
3. Observe that these equations and (77)

imply that a′
1 6= 0 (indeed, otherwise w1 = v1, and we would have a′

1 = a′
2 = a′

3 = 0, which contradicts (77)).
Now Fact 51 implies that the equations w1 + v1 = a′

1 and w3
1 + v3

1 = a′
2 are satisfied by at most two pairs

(w1, v1). Hence |P (z0)| ≤ 2 ≤ 2k−1, and (1) of Claim 52 is proven.
Now we shall prove (2) of Claim 52. If z0 ∈ T then |P (z0)| > 2 and it follows from the above discussion

that for any (z̃0 + w̃1, ṽ0 + ṽ1) ∈ P (z0), we have ṽ0 = ṽ0(z0) and w̃1 = ṽ1. This observation combined with
(76) implies that z0 +v0(z0) = a1 6= 0 and z3

0 +(v0(z0))3 = a2. Then Fact 51 implies that these two equations
have at most two solution pairs (z0, v0(z0)). Thus |T | ≤ 2, proving (2) of Claim 52.

5 Concluding remarks

The study of quasi-random properties in a random setting was considered in, e.g., [14]. Proposition 6 tells
us that the implications “DISC ⇒ NSUB(3)”, “TUPLE(2) ⇒ NSUB(3)” and “EIG ⇒ NSUB(3)” fail to be
true when p = o(1). However, counterexamples demonstrating this proposition are rare and “do not occur
in random graphs”.

In a subsequent paper, we plan to address the question of extending the Chung–Graham–Wilson theorem
(Theorem 1) to “subgraphs of random graphs” if p → 0 sufficiently slowly.

Another direction for future work is the application of the Embedding Lemma (Theorem 16) to extremal
problems for subgraphs of random graphs (including Turán type problems). For discussions on Turán type
extremal problems for subgraphs of random graphs, see [12, Chapter 8], [13], [14, Section 1.4.2], and [15].
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[16] Y. Kohayakawa, V. Rödl, and L. Thoma, An optimal algorithm for checking regularity, SIAM J. Com-
put., to appear.

[17] T.  Luczak, personal communication, 2000.
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