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Abstract. Let V = V (n, q) be a vector space of dimension n over
the finite field with q elements, and let d1 < d2 < . . . < dm be the
dimensions that occur in a subspace partition P of V . Let σq(n, t)
denote the minimum size of a subspace partition of V , in which
t is the largest dimension of a subspace. For any integer s, with
1 < s ≤ m, the set of subspaces in P of dimension less than ds is
called the s-supertail of P. The main result is that the number of
spaces in an s-supertail is at least σq(ds, ds−1).

1. Introduction

Let V = V (n, q) denote a vector space of dimension n over the finite
field with q elements. Motivated by the correspondence to projective
spaces, we call a 1-dimensional subspace of V , a point of V . A subspace
partition P of V , also known as a vector space partition, is a collection
of nonzero subspaces of V such that each point of V is in exactly one
subspace of P .

Throughout this paper we let ni denote the number of spaces in P
of dimension di and we assume that

(1) d1 < d2 < · · · < dm ,

where m is the number of distinct dimensions that occur in P . The
expression [dn1

1 . . . dnm
m ] is called the type of the subspace partition. The

problem of classifying the spectrum of the different types of subspace
partitions is far from solved and seems to be a most difficult problem,
see e.g. [6].

For any integer s with 1 < s ≤ m, the set of subspaces in P of
dimension less than ds is called the s-supertail of P . In the following,
we sometimes simply say supertail and denote it by ST . The union of
all the subspaces in ST is a subset of the vector space; by a point in
the supertail we mean a point contained in that union and we write
PST for the set of such points.

The size of a subspace partition P is the number of subspaces in
P . Let σq(n, t) denote the minimum size of a subspace partition of V
in which the largest subspace has dimension t. The following theorem
was proved in [7] and [9].
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Theorem 1. Let n, k, t, and r be integers such that 1 ≤ r < t, k ≥ 1,
and n = kt+ r. Then

σq(n, t) = qt + 1 for n < 2t ,

and

σq(n, t) = qt+r

k−2∑
i=0

qit + qd
t+r
2
e + 1 for n ≥ 2t .

Here we prove the following theorem.

Theorem 2. For every n and q and every s-supertail ST of a subspace
partition of V (n, q),

(2) |ST | ≥ σq(ds, ds−1) .

In the last section, we give examples of partitions with supertails
for which we have equality in Theorem 2. This shows that the lower
bound given above cannot be improved in general. In Section 5, we
also give an example that shows how Theorem 2 can be used to prove
non-existence of certain subspace partitions.

Theorem 2 extends the following theorem due to Heden [5].

Theorem 3. Let P be a partition of V (n, q) of type [dn1
1 . . . dnm

m ], where
d1 < . . . < dm and ni > 0 for 1 ≤ i ≤ m. Then

(i) if qd2−d1 does not divide n1 and if d2 < 2d1, then n1 ≥ qd1 + 1.
(ii) if qd2−d1 does not divide n1 and d2 ≥ 2d1, then either n1 =

(qd2 − 1)/(qd1 − 1) or n1 > 2qd2−d1.
(iii) if qd2−d1 divides n1 and d2 < 2d1, then n1 ≥ qd2 − qd1 + qd2−d1.
(iv) if qd2−d1 divides n1 and d2 ≥ 2d1, then n1 ≥ qd2.

The paper is organized in the following way. In Section 2, we give
some elementary definitions and results that will be used later. In
Section 3, we show that if the number of points in the s-supertail is
not too large, then the set of vectors in the supertail must constitute
a subspace of V of dimension s. As will be observed in Proposition 4,
in Section 4, this proves Theorem 2 in the case where the number of
points in the supertail is not too large. If ds > 2ds−1 and the number
of points in the s-supertail ST is large, then the size of ST can easily
be bounded from below. These calculations are done in the proof of
Proposition 5, which verifies Inequality (2) for this case. Finally, we
prove Proposition 6 where we show that Inequality (2) is satisfied when
ds−1 < ds ≤ 2ds−1.

In the case s = 2, that is, when a supertail of a subspace partition P
is the so called tail of P , easy verifications show that Theorem 3 implies
Theorem 2. This fact is an ingredient in the proofs of Propositions 5
and 6, which together with Proposition 4 prove Theorem 2.

For historical remarks, applications and a survey of known results in
this area, see for example [6].
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2. Preliminaries

Every subspace partition P of V = V (n, q) satisfies the so-called
packing condition:

m∑
i=1

ni(q
di − 1) = qn − 1 ,

and the dimension condition:

U,U ′ ∈ P , U 6= U ′ =⇒ dim(U) + dim(U ′) ≤ n ,

see e.g. [2].
A hyperplane is a subspace of V of dimension n − 1. The set of all

hyperplanes of V is throughout this paper denoted by H.

Proposition 1. For any subspace U of V , the number of hyperplanes
containing U is

(3)
qn−dim(U) − 1

q − 1
.

Proposition 2. If U is a subset of V containing qd−1 + · · · + q + 1
points and contained in precisely

(4)
qn−d − 1

q − 1

hyperplanes, then U is a subspace of V of dimension d.

Proof. The points of U span a subspace 〈U〉 of V of dimension d′ ≥ d.
The intersection of a family of hyperplanes is a subspace of V , and so
the intersection of all the hyperplanes that contain U is exactly equal
to 〈U〉. The proposition now follows from Proposition 1. �

Let ti(H) denote the number of spaces of dimension di, in a given
subspace partition P , that are contained in the hyperplane H.

Lemma 1. For every s-supertail of every subspace partition P of V
and every hyperplane H in V , there is an integer k such that

s−1∑
i=1

(ni − ti(H))qdi−1 = k · qds−1 .

Proof. The number of vectors not contained in a hyperplane H is qn−
qn−1. Hence, the number of points of V not contained in H is (qn −
qn−1)/(q−1) = qn−1. The intersection of H with a d-dimensional space
U , not contained in H, is a subspace of dimension d − 1, and hence,
the number of points in U that are not contained in H is equal to qd−1.

The spaces in a subspace partition P of V cover all points in V . Now
compare the number of points in V that are not contained in H with
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the number of points in each space in P that are not contained in H.
From that we get

m∑
i=1

(ni − ti(H))qdi−1 = qn−1 ,

and the lemma follows. �

This lemma has two immediate corollaries:

Corollary 1. For every H ∈ H, the number of points of the s-supertail
ST that do not belong to H is a multiple of qds−1.

Corollary 2. For any two hyperplanes H and H ′ such that ti(H) =
ti(H

′) for i = 2, 3, ..., s− 1, it is true that

t1(H
′) = t1(H) + kqds−d1 ,

for some integer k.

3. Small tails

Lemma 2. Let ST be an s-supertail of a subspace partition P of V ,
and let PST be the set of all points in ST . Then we have the following
possibilities for the cardinality of PST .

(i) |PST | ≥ 2(qds−1 + qds−2),
(ii) ds−1 = 1 and |PST | = 2qds−1,1

(iii) |PST | = 2qds−1 + (qds−1 − 1)/(q − 1), or
(iv) |PST | = (qds − 1)/(q − 1) and PST constitutes a ds-dimensional

subspace.

Proof. Assume that |PST | < 2(qds−1 + qds−2) and that either ds−1 6= 1
or |PST | 6= 2qds−1. Let H be any hyperplane. From Corollary 1 and
since |PST | < 2(qds−1 + qds−2), it follows that the number of points of
ST that are not contained in H is equal to δ ·qds−1, where δ ∈ {0, 1, 2}.

Suppose that there is a hyperplane H containing all but 2qds−1 points
of PST . Derive a partitionQ from P by splitting up all the spaces in the
supertail into points. Then Q induces a partition QH of H: Intersect
the spaces in Q with H and keep those intersections that are not the
zero space. Since ST either contains a subspace of dimension at least
2 or |PST | 6= 2qds−1, it follows that the tail T of QH contains at least
one point. We now apply Theorem 3 to the partition QH . Then, using
the assumptions above, straightforward verifications show that the only
possibility for the size of the tail T of QH is |T | = (qds−1 − 1)/(q − 1).
This shows that if we assume that neither (i) nor (ii) occurs, then either
(iii) holds or the following property holds: “every hyperplane contains

1It can be shown that this case occurs only if q = 2. For example, V (3, 2) has
a subspace partition consisting of one 2-dimensional space and four 1-dimensional
spaces.
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all points in the supertail or all but qds−1 points”. We now analyze the
latter case.

Let d denote the dimension of the subspace of V spanned by the
points of ST . From Proposition 1, we obtain that the number of hy-
perplanes that do not contain the complete supertail and thus avoid
exactly qds−1 supertail points, is equal to

(5)
qn − 1

q − 1
− qn−d − 1

q − 1
= qn−d

qd − 1

q − 1
.

We now count the number of incidences (H,P ) where H is a hyper-
plane not containing the point P in the supertail. As the number of
hyperplanes that do not contain a given point P is equal to qn−1 by
Proposition 1, we then obtain from Equation (5) that

(6) |PST | · qn−1 = qn−d
qd − 1

q − 1
qds−1 .

One evident solution to this equation in d and the size of PST is

d = ds and |PST | =
qds − 1

q − 1
.

If this case occurs, then, by Proposition 2, the points of the supertail
constitute a subspace of dimension ds. It remains to show that there
are no other solutions.

If d > ds, then from Equation (6) follows that q has to divide (qd −
1)/(q − 1), which is impossible.

If d < ds, then the subspace U spanned by the points of the tail has
at most dimension ds − 1. Such a subspace contains less than qds−1

points, implying by Corollary 1 that all hyperplanes contain all points
of the supertail, which is impossible, as the supertail is not empty. �

One consequence of Lemma 2 is that if the supertail is “small” then
the points in the supertail constitute a subspace of V . This fact will
be used in the proof of our main theorem. In general, collecting points
together to get subspaces of higher dimensions is a useful technique
in the study of subspace partitions. We thus think that the following
remark is interesting.

Remark 1. Let ST be an s-supertail. We claim that if |PST | <
3qds−1+(qds−1−1)/(q−1) and |PST | 6= δ(qds−1)/(q−1) for δ ∈ {1, 2},
then no subset of PST forms a ds-dimensional space. Indeed, suppose
some of the points of ST form a ds-dimensional space W . Derive a
partition P ′ from P by replacing all the points of ST that form a ds-
dimensional space with the space W , and split all the remaining spaces
in the supertail into points. Then P ′ has subspaces of dimension 1 and
of dimension greater than or equal to ds. Let S ′ be the tail of P ′. If
|PST | < 3qds−1 + (qds−1 − 1)/(q − 1), then

|S ′| < 2qds−1,
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and since |PST | 6= 2(qds−1)/(q−1), the size of S ′ contradicts Theorem
3 which states that |S ′| ≥ 22qds−1 or |S ′| = (qds − 1)/(q − 1).

4. Proof of Theorem 2

Trivial verifications show

Proposition 3. The bounds provided by Theorem 3 are all at least
σq(d2, d1).

An immediate consequence of Lemma 2 together with Proposition 3
is the following proposition:

Proposition 4. If the number of points in the s-supertail ST is less
than 2 · qds−1 + (qds−1 − 1)/(q − 1), then

|ST | ≥ σq(ds, ds−1) .

By simply counting the number of points in the members of a super-
tail, we obtain

Proposition 5. If ds ≥ 2ds−1 and the number of points in the s-
supertail ST is at least equal to 2 · qds−1 + (qds−1 − 1)/(q − 1), then

|ST | > σq(ds, ds−1).

Proof. Let k and r be integers with ds = kds−1 + r such that 0 ≤ r <
ds−1. Suppose that |PST | ≥ 2 · qds−1 + (qds−1 − 1)/(q − 1).

Since the largest subspace in ST has dimension ds−1, we can, by using
the packing condition, estimate the size of the supertail as follows:

(7) |ST | ≥ 2 · qds−1 + (qds−1 − 1)/(q − 1)

(qds−1 − 1)/(q − 1)
=

2 · qds − qds−1 − 1

qds−1 − 1
.

If r = 0, then σq(ds, ds−1) = (qds − 1)/(qds−1 − 1) and so from the
inequality above follows that |ST | > σq(ds, ds−1).

If r ≥ 1, then from Theorem 1 we deduce that

(8) σq(ds, ds−1) =
qds − qds−1+r

qds−1 − 1
+ qd

ds−1+r

2
e + 1 .

Hence, from Equation (7) it follows that |ST | > σq(ds, ds−1) if

2qds − qds−1 − 1 > qds − qds−1+r + (qd
ds−1+r

2
e + 1)(qds−1 − 1)

or equivalently,

qds−1(q − 1) + qds−1+r > qd
ds−1+r

2
e(qds−1 − 1) + qds−1 .

Since ds ≥ 2ds−1 + 1, r ≥ 1, and q ≥ 2, the inequality above holds,
and the proof of the proposition is complete. �

It remains to prove

2Equality can occur only if q = 2.
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Proposition 6. If ds−1 < ds < 2ds−1 then for the s-supertail ST we
have that |ST | ≥ qds−1 + 1, that is,

|ST | ≥ σq(ds, ds−1).

Proof. The case s = 2 is covered by Theorem 3, so we may assume that
s ≥ 3. Let `0 denote the smallest non negative integer ` that satisfies
the equation

`+ kqds−d1 =
s−1∑
i=1

niq
di−d1

for some integer k. Let k0 denote the corresponding value of k. It is
clear that 0 ≤ `0 < qds−d1 , and that

(9) (n1 − `0)qd1−1 +
s−1∑
i=2

niq
di−1 = k0q

ds−1

holds.
We consider two cases.
Case 1: `0 ≥ qds−1−d1. For j = 2, 3, . . . , s − 1 and 0 ≤ ij ≤ nj,

let b(i2,i3,...,is−1) denote the number of hyperplanes that contain exactly
ij spaces of dimension dj from the supertail. For any non negative
integer n, let [n] denote the set {0, 1, 2, . . . , n} and write N for [n2] ×
. . . × [ns−2] × [ns−1], write N0 for [n2] × . . . × [ns−2] × [0] and N>0 for
[n2]× . . .× [ns−2]× {1, 2, . . . , ns−1}.

Define the integer Ls−1 by

Ls−1 =
∑
i∈N

is−1 · bi =
∑
i∈N>0

is−1 · bi ,

the integers Lj, for j = 2, 3 . . . , s− 2, by

Lj =
∑
i∈N0

ij · bi ,

and the integer L1 by

L1 =
∑
i∈N0

bi

(
qds−1−d1 −

s−2∑
j=2

ij · qdj−d1
)
.

The above equality can be expressed as

(10)
s−2∑
j=1

qdjLj = qds−1

∑
i∈N0

bi .

We also have that

(11)
∑
i∈N

bi = |H| = qn − 1

q − 1
.
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If we determine the number of incidences (H,W ) where H is a hy-
perplane and W a subspace of dimension ds−1 in the supertail, we then
get, from Proposition 1 and the definition of Ls−1, that

(12) Ls−1 = ns−1
qn−ds−1 − 1

q − 1
.

Doing the same with dimW = dj instead yields for j = 2, 3, . . . , s− 2

(13) Lj ≤ nj
qn−dj − 1

q − 1
.

We observe that by Equation (9) the equation below for t

(n1 − `0 + t)qd1−1 +
s−2∑
j=2

(nj − ij)qdj−1 + ns−1q
ds−1−1 = k0q

ds−1

has the unique solution

t = t0 =
s−2∑
j=2

ij · qdj−d1 .

Let H0 be the set of all hyperplanes that contain no space of dimen-
sion ds−1 from the supertail and exactly ij spaces of dimension dj, for
j = 2, 3, . . . , s − 2, from it. As `0 − t0 < qds−d1 , it follows from Corol-
lary 2 that every hyperplane in H0 contains at least `0 − t0 spaces of
dimension d1 from the supertail. Since `0 ≥ qds−1−d1 in the case under
consideration, it follows that every hyperplane in H0 contains at least

`0 − t0 ≥ qds−1−d1 −
s−2∑
j=2

ij · qdj−d1

spaces of dimension d1 from the supertail. Hence, by counting the
number of incidences (H,W ), where H is a hyperplane and W is a
space of dimension d1 in the supertail, we get

(14) L1 ≤ n1
qn−d1 − 1

q − 1
.

Now, from Equations (10) and (11), we get that

qds−1 · |H| =
s−2∑
j=1

qdjLj + qds−1

∑
i∈N>0

bi ,

and thus from the definition of the integer Ls−1 that

(15) qds−1 · |H| ≤
s−2∑
j=1

qdjLj + qds−1Ls−1 .

Trivially, for any positive integer d,

(16) qd
qn−d − 1

q − 1
<
qn − 1

q − 1
,
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holds. Thus, combining the Equations (11), (13), (14) and (15) gives

qds−1
qn − 1

q − 1
< (

s−1∑
j=1

nj)
qn − 1

q − 1
.

An immediate consequence of the inequality above is that n1 + n2 +
. . .+ ns−1 > qds−1 , that is, that |ST | ≥ qds−1 + 1.

Case 2: 0 ≤ `0 < qds−1−d1. Let U ′ be one of the spaces of dimension
ds−1 in the supertail and let H′ denote the set of all hyperplanes that
contain U ′. Let n′ = n − ds−1. Let b′(i2,i3,...is−1)

denote that number of

hyperplanes inH′ that beside U ′ contain exactly ij, for j = 2, 3, . . . , s−
1, of the spaces of dimension dj in the supertail. Let n′s−1 = ns−1 − 1
and let n′i = ni for i = 1, 2, . . . , s − 2. Define N ′, N ′0 and N ′>0 by
N ′ = [n′1] × . . . × [n′s−2] × [n′s−1], N

′
0 = [n′1] × . . . × [n′s−2] × [0] and

N ′ = [n′1]× . . .× [n′s−2]× {1, 2, . . . n′s−1}.
Let `′0 denote the smallest non-negative integer value of ` satisfying

the equation

(17) (n′1 − `)qd1−1 + n′2q
d2−1 + . . .+ n′s−1q

ds−1−1 = kqds−1 .

for some integer k, so `′0 < qds−d1 .
With `0 and k0 defined as above, we have that

(n′1−`0+qds−1−d1−qds−d1)qd1−1+n′2qd2−1+. . .+n′s−1qds−1−1 = (k0−1)qds−1

In the case under consideration, it is true that

0 ≤ `0 − qds−1−d1 + qds−d1 < qds−d1 ,

and hence we may deduce that

`′0 = `0 − qds−1−d1 + qds−d1

and
k′0 = k0 − 1

for the solution k′0 of Equation (17) corresponding to `′0. Finally, since
`0 ≥ 0, we obtain

`′0 ≥ qds−d1 − qds−1−d1 ≥ qds−1−d1 .

We can now proceed as in Case 1, but considering only hyperplanes
in H′. First, note that

(18)
∑
i∈N ′

b′i = |H′| = qn
′ − 1

q − 1
,

and that the number of hyperplanes containing both U ′ and some other
subspace W in the supertail is

qn
′−dimW − 1

q − 1
.
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Observe that by Equation (17) for all i = (i2, . . . , is−1) ∈ N ′

(n′1 − `′0 + t′)qd1−1 +
s−2∑
j=2

(n′j − ij)qdj−1 + n′s−1q
ds−1−1 = k′0q

ds−1

has the unique solution

t′ = t′0 =
s−2∑
j=2

ijq
dj−d1 .

As in Case 1, each hyperplane in H′ containing no ds−1-dimensional
supertail space except U ′ and ij supertail spaces of dimension dj for all
j ∈ {2, 3, . . . , s− 2} contains at least

`′0 − t′0 ≥ qds−1−d1 −
s−2∑
j=2

ijq
dj−d1

supertail spaces of dimension d1. Thus, double counting incidences
(H,U) with H ∈ H′, U ∈ ST and dimU = d1 yields

(19) L′1 =
∑
i∈N ′0

b′i(q
ds−1−d1 −

s−2∑
j=2

ijq
dj−d1) ≤ n1

qn
′−d1 − 1

q − 1
.

Double counting incidences (H,U) with H ∈ H′ and U a ds−1-
dimensional supertail space distinct from U ′ yields

(20) L′s−1 =
∑
i∈N ′

is−1b
′
i = n′s−1

qn
′−ds−1 − 1

q − 1
,

and considering incidences (H,U) with H ∈ H′ and U a dj-dimensional
supertail space gives

(21) L′j =
∑
i∈N ′0

ijb
′
i ≤ n′j

qn
′−dj − 1

q − 1
.

With these definitions, again the definition of L′1 can be rewritten to

(22) qds−1

∑
i∈N ′0

b′i =
s−2∑
j=1

qdjL′j.
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Together, we obtain the following chain of inequalities:

qds−1 · q
n′ − 1

q − 1

(18),(22)
=

s−2∑
j=1

qdjL′j + qds−1

∑
i∈N ′>0

b′i

(20)

≤
s−1∑
j=1

qdjL′j

(19),(20),(21)

≤
s−1∑
j=1

n′jq
dj
qn
′−dj − 1

q − 1

<

s−1∑
j=1

n′j
qn
′ − 1

q − 1
,

where the last inequality follows trivially as in Case 1. Hence, we have

qds−1 <
s−1∑
j=1

n′j =
s−1∑
j=1

nj − 1,

meaning that in this case, the size of the supertail is greater than
qds−1 + 1. �

5. Examples and Conluding Remarks

We first show that the bound in Theorem 2 cannot be improved in
general. We use a general construction of a special class of subspace
partitions that originates from a paper by André [1]:

Let F be any field and let K be any subfield of F . Choose field
elements αi, for i ∈ I, such that they constitute a set of coset repre-
sentatives of the multiplicative group of K in the multiplicative group
of F . If we consider F as a vector space over its prime field, then the
sets αiK, for i ∈ I, constitutes a subspace partition of F .

Example 1. Consider the finite field F = GF(64) and the subfield K
of F with 8 elements. Let P denote the subspace partition obtained
by the recipe given above. The subspaces in the subspace partition all
have dimension 3; let U be one of the members of P .

By substituting U in P with one hyperplane H in U and the four
points in U that are not contained in H, we get a derived partition P ′
from P with n3 = 8 subspaces of dimension d3 = 3, n2 = 1 subspace
of dimension d2 = 2 and n1 = 4 subspaces of dimension d1 = 1. With
s = 3 we then get an s-supertail ST consisting of the five subspaces
of dimension 2 or 1, respectively. The size of this supertail ST attains
the bound given in Theorem 2.

Similarly, as in the example above, we can for every prime power q
produce an infinite sequence of subspace partitions of a vector space
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V (n, q) with supertails reaching the bound of Theorem 2, since the
supertail is obtained by splitting up one of the ds-dimensional spaces
into smaller ones.

In the next example, we give an application of Lemma 2.

Example 2. We show the nonexistence of a subspace partition P of
V (7, 2) consisting of 17 subspaces of dimension 3, one subspace of di-
mension 2, and five subspaces of dimension 1.

Let ST denote the supertail formed by the subspaces of P of dimen-
sions 2 and 1. Then the number of points of ST is 1 · 3 + 5 = 8 <
(2 · 23−1 + (23−1 − 1) − 1). So by Lemma 2, the points of ST must
form a 3-dimensional subspace, which is clearly impossible since such
a subspace would contain exactly 7 points. So there is no subspace
partition of this type.

The nonexistence of the subspace partition in the example above
can also be verified by the results given in [8], where some new neces-
sary conditions for the existence of subspace partitions were derived by
exploiting methods similar to those used in the proof of Proposition 6.

The next example shows that the supertail conditions in Theorem 2
together with the tail conditions in Theorem 3, are not sufficient for
the existence of a subspace partition.

Example 3. From the results of [8], see also [4], it follows that there
is no subspace partition of the type [2636413] in V (8, 2) (although this
type of subspace partition satisfies both the packing condition, the
dimension condition, and the tail conditions). As a supertail with
s = 3 in this type of partition consists of 12 spaces, and σ2(4, 3) = 9,
the existence of this type of subspace partition can not be excluded by
our Theorem 2.

We also ran a computer search for a type of subspace partition,
the existence of which can be excluded by the supertail conditions in
Theorem 2, but not by the necessary conditions in [8]. However, we
have not yet found any such type of subspace partition.

Finally, we have the following corollary of Proposition 5 and Lemma 2.

Corollary 3. Let ST be an s-supertail of the subspace partition P of
V , and let PST be the set of all points in ST . If |ST | = σ(ds, ds−1) and
ds ≥ 2ds−1, then PST constitutes a ds-dimensional subspace.

Proof. If |PST | ≥ 2qds−1 + (qds−1 − 1)/(q − 1), then it follows from
Proposition 5 that |ST | > σ(ds, ds−1). Thus, if |ST | = σ(ds, ds−1),
then we must have |PST | < 2qds−1 + (qds−1− 1)/(q− 1). Consequently,
Lemma 2 implies that |PST | = (qds − 1)/(q − 1) and PST constitutes a
ds-dimensional subspace. �

We believe that Corollary 3 also holds for ds−1 < ds < 2ds−1. In par-
ticular, we conjecture that the bound in Theorem 2 holds with equality
if and only if ST is a subspace.



THE SUPERTAIL OF A SUBSPACE PARTITION 13

References
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[7] O. Heden, J. Lehmann, E. Năstase, and P. Sissokho, Extremal sizes of subspace
partitions, to appear in Designs, Codes and Cryptography.

[8] J. Lehmann and O Heden, Some necessary conditions for vector space parti-
tions, to appear in Discrete Math.
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