PARTITIONS OF THE 8-DIMENSIONAL VECTOR SPACE OVER GF(2)

S. EL-ZANATI \dagger, O. HEDEN \ddagger, G. SEELINGER \dagger, P. SISSOKHO \dagger, L. SPENCE \dagger, C. VANDEN EYNDEN \dagger

$\dagger 4520$ MATHEMATICS DEPARTMENT

ILLINOIS STATE UNIVERSITY
NORMAL, ILLINOIS 61790-4520, U.S.A.

\ddagger DEPARTMENT OF MATHEMATICS

KTH, S-100 44 STOCKHOLM, SWEDEN

Abstract

Let $V=V(n, q)$ denote the vector space of dimension n over GF(q). A set of subspaces of V is called a partition of V if every nonzero vector in V is contained in exactly one subspace of V. Given a partition \mathcal{P} of V with exactly a_{i} subspaces of dimension i for $1 \leq i \leq n$, we have $\sum_{i=1}^{n} a_{i}\left(q^{i}-1\right)=q^{n}-1$, and we call the n-tuple ($a_{n}, a_{n-1}, \ldots, a_{1}$) the type of \mathcal{P}. In this paper we identify all 8 -tuples $\left(a_{8}, a_{7}, \ldots, a_{2}, 0\right)$ that are the types of partitions of $V(8,2)$.

1. Introduction

Let n be a positive integer, q a prime power, and $V=V(n, q)$ denote a vector space of dimension n over the finite field GF(q). A partition of V is a collection of subspaces $U_{1}, U_{2}, \ldots, U_{t}$ such that

$$
V=\bigcup_{i=1}^{t} U_{i} \quad \text { and } \quad U_{i} \cap U_{j}=\{0\} \quad \text { for } \quad i \neq j .
$$

Given a partition \mathcal{P} of V with exactly a_{i} subspaces of dimension i for $1 \leq i \leq n$, the following condition holds

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}\left(q^{i}-1\right)=q^{n}-1 \tag{1}
\end{equation*}
$$

and we call the n-tuple $\left(a_{n}, a_{n-1}, \ldots, a_{1}\right)$ the type of \mathcal{P}. More compactly, we call \mathcal{P} an $n^{a_{n}}(n-1)^{a_{n-1}} \cdots 1^{a_{1}}$-partition, and we often omit factors in this formal product with exponent 0 . For example, we

Key words and phrases. Vector space partition.
could call a partition of $V(8,2)$ into 17 subspaces of dimension 4 a 4^{17}-partition.

A second necessary condition for an n-tuple to be a partition type comes from dimension considerations.

$$
\begin{equation*}
\text { If } a_{i} \geq 2 \text {, then } i \leq n / 2, \text { and } \tag{2}
\end{equation*}
$$

$$
\text { if } i \neq j \text { and } a_{i} a_{j}>0, \text { then } i+j \leq n .
$$

A third condition involves the number of subspaces of least dimension in the partition \mathcal{P} of $V(n, q)$. (See Theorem 3.2 of [1], and for a stronger condition, see [11].)
(3) If i is the smallest integer such that $a_{i}>0$, and $i<n$,

$$
\text { then } a_{i} \geq q i+1
$$

In general, necessary and sufficient conditions for the existence of an $n^{a_{n}} \cdots 1^{a_{1}}$-partition of $V(n, q)$ are not known. Of course, any collection of pairwise trivially intersecting subspaces can be expanded to a partition by including subspaces of dimension 1 .

There are a few results that characterize vector space partitions of $V(n, q)$. O. Heden characterized the $(n-3)^{1} 3^{a} 2^{b}$-partitions of $V(n, 2)$ for all $n \geq 9$ (see [9]). More recently, he gave necessary and sufficient conditions for the existence of certain vector space partitions of $V(n, q)$ for all $n \geq 9$ (see [10]). S. El-Zanati et al. characterized the $n^{a_{n}} \cdots 1^{a_{1}}$ partitions of $V(n, q)$ for $n \leq 7$ and $q=2$ (see [5]), and the $3^{a} 2^{b}$ partitions of $V(n, 2)$ for all $n \geq 2$ (see [6]).

Vector space partitions have applications in design theory (in particular, uniformly resolvable designs [1]), coding theory (see [3, 12, 13, $14]$), and orthogonal arrays (see [4, 7]). The study of vector space partitions of $V(n, q)$ for small n and q is important in providing a rich set of examples and in supporting more general results. For instance, the partitions in this paper establish the tightness of bounds, obtained by Heden [11] (see Remark 20). Moreover, the constructions of vector space partitions of $V(n, q)$ for small n provide base cases for recursive constructions with larger values of n (see $[6,9]$). This is similar to the situation in $t-(v, k, \lambda)$ designs where the designs with small parameters provide the building blocks for recursive constructions (e.g., [16]).

In this paper, we prove the following theorem.
Theorem 1. With one exception, an $8^{a_{8}} 7^{a_{7}} \cdots 2^{a_{2}} 1^{0}$-partition of $V(8,2)$ exists if and only if the feasibility conditions (1), (2), and (3) are satisfied. The exception is that there is no $4^{13} 3^{6} 2^{6}$-partition of $V(8,2)$.
This paper is organized as follows. In Section 2.1, we characterize the $8^{a_{8}} 7^{a_{7}} \cdots 2^{a_{2}} 1^{0}$-partitions of $V(8,2)$ with $a_{5} \geq 1$. In Section 2.2
and Section 3, we construct all feasible $4^{a} 3^{b} 2^{c}$-partitions of $V(8,2)$ with $(a, b, c) \neq(13,6,6)$. We then show in Section 2.3 that there is no $4^{13} 3^{6} 2^{6}$-partition of $V(8,2)$. Finally, we discuss in Section 4 the computational aspects of our constructions.

2. Proof of Theorem 1

The proof of Theorem 1 has three main parts, which we consider in the following sections.
2.1. Partitions with a subspace of dimension at least 5 . We begin with two known results.
Lemma 2 ([2], Lemma 4). Let n and d be integers such that $1 \leq d \leq$ $n / 2$. Then $V(n, q)$ can be partitioned into one subspace of dimension $n-d$ and q^{n-d} subspaces of dimension d.

Lemma 3 ([6], Theorem 6.1). Suppose that a, b, and c are nonnegative integers that satisfy $31 a+7 b+3 c=2^{8}-1$. Then $V(8,2)$ has a $5^{a} 3^{b} 2^{c}$ partition unless such a partition is ruled out by conditions (2) or (3).
The following lemma constitutes the first part of the proof of Theorem 1.

Lemma 4. Let a_{2}, \ldots, a_{8} be nonnegative integers such that $a_{5}+a_{6}+$ $a_{7}+a_{8} \geq 1$. Then there exists an $8^{a_{8}} 7^{a_{7}} \cdots 2^{a_{2}} 1^{0}$-partition of $V(8,2)$ if and only if conditions (1), (2), and (3) hold.

Proof. From condition (2), it follows that $a_{5}+a_{6}+a_{7}+a_{8}=1$. There is the trivial 8^{1}-partition, but $a_{7}=1$ is ruled out by conditions (2) and (3). If $a_{6}=1$, then only a $6^{1} 2^{64}$-partition is possible by the three conditions, and this exists by Lemma 2. Finally, if $a_{5}=1$, then $a_{4}=0$ by condition (2) and $31 a_{5}+7 a_{3}+3 a_{2}=2^{8}-1$ by condition (1). Partitions of all such types exist by Lemma 3 .
2.2. Partitions with subspaces of dimension at most 4. The second piece in the proof of Theorem 1 deals with the $4^{a} 3^{b} 2^{c}$-partitions of $V=V(8,2)$. To explain their constructions, we start with the following setup. Let $F=\operatorname{GF}(256)$ be the field with 256 elements generated by the irreducible polynomial $x^{8}+x^{4}+x^{3}+x^{2}+1$. Take α to be x, and let $G=\left\{\alpha^{i}: 0 \leq i \leq 254\right\}$ be the multiplicative group of nonzero elements of F. Consider the multiplicative subgroup $H=\left\{1, \alpha^{85}, \alpha^{2.85}\right\}$ of G. Then $H \cup\{0\}=\mathrm{GF}(4)$ is a 2 -dimensional subspace of V. It is also easy to see that the cosets of H, namely $H, \alpha H, \ldots, \alpha^{84} H$, form (with 0 added to each) a 2^{85}-partition of V. For any integer r not divisible by 255 , define r^{\prime} as that integer $j, 0 \leq$
$j \leq 254$, such that $1+\alpha^{r}=\alpha^{j}$. (Note that $1+\alpha^{0}=0$, which is not a power of α, or even in G.) Then for any integers i and j not congruent modulo 255, $\alpha^{i}+\alpha^{j}=\alpha^{i}\left(1+\alpha^{j-i}\right)=\alpha^{i} \alpha^{(j-i)^{\prime}}=\alpha^{i+(j-i)^{\prime}}$. For instance $1^{\prime}=25$ and $2^{\prime}=50$. Moreover, since $1+\alpha^{r}=\alpha^{r^{\prime}}$ yields $1+\alpha^{r^{\prime}}=\alpha^{r}$, we have $\left(r^{\prime}\right)^{\prime}=r$. Table 1 shows the pairs $\left(r, r^{\prime}\right), 1 \leq r \leq r^{\prime} \leq 254$; and it can be easily generated using mathematical software (e.g., Maple).

$(1,25)$	$(2,50)$	$(3,223)$	$(4,100)$	$(5,138)$	$(6,191)$	$(7,112)$
$(8,200)$	$(9,120)$	$(10,21)$	$(11,245)$	$(12,127)$	$(13,99)$	$(14,224)$
$(15,33)$	$(16,145)$	$(17,68)$	$(18,240)$	$(19,92)$	$(20,42)$	$(21,10)$
$(22,235)$	$(23,196)$	$(24,254)$	$(25,1)$	$(26,198)$	$(27,104)$	$(28,193)$
$(29,181)$	$(30,66)$	$(31,45)$	$(32,35)$	$(33,15)$	$(34,136)$	$(35,32)$
$(36,225)$	$(37,179)$	$(38,184)$	$(39,106)$	$(40,84)$	$(41,157)$	$(42,20)$
$(43,121)$	$(44,215)$	$(45,31)$	$(46,137)$	$(47,101)$	$(48,253)$	$(49,197)$
$(50,2)$	$(51,238)$	$(52,141)$	$(53,147)$	$(54,208)$	$(55,63)$	$(56,131)$
$(57,83)$	$(58,107)$	$(59,82)$	$(60,132)$	$(61,186)$	$(62,90)$	$(63,55)$
$(64,70)$	$(65,162)$	$(66,30)$	$(67,216)$	$(68,17)$	$(69,130)$	$(70,64)$
$(71,109)$	$(72,195)$	$(73,236)$	$(74,103)$	$(75,199)$	$(76,113)$	$(77,228)$
$(78,212)$	$(79,174)$	$(80,168)$	$(81,160)$	$(82,59)$	$(83,57)$	$(84,40)$
$(85,170)$	$(86,242)$	$(87,167)$	$(88,175)$	$(89,203)$	$(90,62)$	$(91,209)$
$(92,19)$	$(93,158)$	$(94,202)$	$(95,176)$	$(96,251)$	$(97,190)$	$(98,139)$
$(99,13)$	$(100,4)$	$(101,47)$	$(102,221)$	$(103,74)$	$(104,27)$	$(105,248)$
$(106,39)$	$(107,58)$	$(108,161)$	$(109,71)$	$(110,126)$	$(111,246)$	$(112,7)$
$(113,76)$	$(114,166)$	$(115,243)$	$(116,214)$	$(117,122)$	$(118,164)$	$(119,153)$
$(120,9)$	$(121,43)$	$(122,117)$	$(123,183)$	$(124,180)$	$(125,194)$	$(126,110)$
$(127,12)$	$(128,140)$	$(129,239)$	$(130,69)$	$(131,56)$	$(132,60)$	$(133,250)$
$(134,177)$	$(135,144)$	$(136,34)$	$(137,46)$	$(138,5)$	$(139,98)$	$(140,128)$
$(141,52)$	$(142,218)$	$(143,150)$	$(144,135)$	$(145,16)$	$(146,217)$	$(147,53)$
$(148,206)$	$(149,188)$	$(150,143)$	$(151,178)$	$(152,226)$	$(153,119)$	$(154,201)$
$(155,159)$	$(156,169)$	$(157,41)$	$(158,93)$	$(159,155)$	$(160,81)$	$(161,108)$
$(162,65)$	$(163,182)$	$(164,118)$	$(165,227)$	$(166,114)$	$(167,87)$	$(168,80)$
$(169,156)$	$(170,85)$	$(171,211)$	$(172,229)$	$(173,232)$	$(174,79)$	$(175,88)$
$(176,95)$	$(177,134)$	$(178,151)$	$(179,37)$	$(180,124)$	$(181,29)$	$(182,163)$
$(183,123)$	$(184,38)$	$(185,249)$	$(186,61)$	$(187,204)$	$(188,149)$	$(189,219)$
$(190,97)$	$(191,6)$	$(192,247)$	$(193,28)$	$(194,125)$	$(195,72)$	$(196,23)$
$(197,49)$	$(198,26)$	$(199,75)$	$(200,8)$	$(201,154)$	$(202,94)$	$(203,89)$
$(204,187)$	$(205,207)$	$(206,148)$	$(207,205)$	$(208,54)$	$(209,91)$	$(210,241)$
$(211,171)$	$(212,78)$	$(213,233)$	$(214,116)$	$(215,44)$	$(216,67)$	$(217,146)$
$(218,142)$	$(219,189)$	$(220,252)$	$(221,102)$	$(222,237)$	$(223,3)$	$(224,14)$
$(225,36)$	$(226,152)$	$(227,165)$	$(228,77)$	$(229,172)$	$(230,231)$	$(231,230)$
$(232,173)$	$(233,213)$	$(234,244)$	$(235,22)$	$(236,73)$	$(237,222)$	$(238,51)$
$(239,129)$	$(240,18)$	$(241,210)$	$(242,86)$	$(243,115)$	$(244,234)$	$(245,11)$
$(246,111)$	$(247,192)$	$(248,105)$	$(249,185)$	$(250,133)$	$(251,96)$	$(252,220)$
$(253,48)$	$(254,24)$					

Table 1. All pairs (r, r^{\prime}) with $1+\alpha^{r}=\alpha^{r^{\prime}}$ in $\mathrm{GF}(256)$.

For any integer i, let S_{i} be the 3 -tuple ($\alpha^{i}, \alpha^{i+85}, \alpha^{i+2 \cdot 85}$), where the powers of α are taken modulo 255 . For example, $S_{0}=\left(1, \alpha^{85}, \alpha^{170}\right)$,
$S_{1}=\left(\alpha, \alpha^{86}, \alpha^{171}\right)$, and $S_{25}=\left(\alpha^{25}, \alpha^{110}, \alpha^{195}\right)$. We define the addition of these 3 -tuples to be coordinatewise addition, so that, for $1 \leq t \leq 3$, entry t of $S_{i}+S_{j}$ is

$$
\begin{equation*}
\alpha^{i+85(t-1)}+\alpha^{j+85(t-1)}=\alpha^{i+85(t-1)+(j-i)^{\prime}}=\alpha^{i+(j-i)^{\prime}+85(t-1)} . \tag{4}
\end{equation*}
$$

Thus $S_{i}+S_{j}=S_{i+(j-i)^{\prime}}$ and this addition is associative. Observe that if $i \equiv j(\bmod 85)$, then S_{i} and S_{j} contain the same entries (those of $\left.\alpha^{i} H\right)$, but in a different cyclic order unless $i \equiv j(\bmod 255)$. However, if $i \not \equiv j(\bmod 85)$, we use the following well-known lemma to guarantee that the subspaces generated by combining entries from the S_{i} 's have intersection $\{0\}$.
Lemma 5. Let i and j be two integers such that $i \not \equiv j(\bmod 85)$. Then the entries in S_{i} and S_{j} are pairwise distinct. That is

$$
\alpha^{i} H \cap \alpha^{j} H=\left\{\alpha^{i}, \alpha^{i+85}, \alpha^{i+2 \cdot 85}\right\} \cap\left\{\alpha^{j}, \alpha^{j+85}, \alpha^{j+2 \cdot 85}\right\}=\emptyset .
$$

For any i and j such that $i \not \equiv j(\bmod 85)$, it follows from Lemma 5 that the entries of S_{i} and S_{j} span 2-dimensional subspaces of V with intersection $\{0\}$. In the following, we provide a construction that reconfigures the entries of five S_{i} 's into one 4 -dimensional subspace and another one that reconfigures the entries of seven S_{i} 's into three 3dimensional subspaces.

Construction 1: Let W denote the 4-dimensional subspace of V spanned by the entries of S_{i} and S_{j}, and suppose that α^{k} is a nonzero vector in W that is not an entry of S_{i} or S_{j}. Then there exist integers p and q such that α^{p} is an entry of S_{i}, α^{q} is an entry of S_{j}, and $\alpha^{p}+\alpha^{q}=\alpha^{k}$. Because of equation (4), each of the entries of S_{k} is a vector in W. Thus the nonzero vectors in W are the entries of five of the 3-tuples S_{r}. Specifically, the nonzero vectors in W are the entries of $S_{i}, S_{j}, S_{b}, S_{c}$, and S_{d}, where

$$
\begin{aligned}
& b \equiv i+(j-i)^{\prime}(\bmod 85), \\
& c \equiv i+(j-i+85)^{\prime}(\bmod 85),
\end{aligned}
$$

and

$$
d \equiv i+(j-i+170)^{\prime}(\bmod 85) .
$$

In Examples 11-19 in Section 3, each of the sets in \mathcal{A} consists of five of the S_{r} obtained in this manner. For instance, if $i=7$ and $j=29$, then

$$
\begin{aligned}
& b=7+(29-7)^{\prime}=7+22^{\prime}=7+235=242 \equiv 72(\bmod 85), \\
& c=7+(29-7+85)^{\prime}=7+107^{\prime}=7+58=65(\bmod 85),
\end{aligned}
$$

and

$$
d=7+(29-7+170)^{\prime}=7+192^{\prime}=7+247 \equiv 84(\bmod 85) .
$$

Thus the set

$$
\{0\} \cup\left\{\alpha^{i+85 t}: \quad i=7,29,65,72,84 \text { and } 0 \leq t \leq 2\right\}
$$

is a 4-dimensional subspace of V.
Construction 2: We explain a method for constructing 3 disjoint 3dimensional subspaces by using the entries of triplets $S_{i_{j}}, 1 \leq j \leq 7$. Let i_{1}, i_{2}, and i_{3} be integers such that no two of them are congruent modulo 85 , and $i_{3} \not \equiv i_{1}+\left(i_{2}-i_{1}\right)^{\prime}(\bmod 255)$. Let i_{4}, i_{5}, i_{6}, and i_{7} be such that:

$$
\begin{aligned}
& i_{4} \equiv i_{1}+\left(i_{2}-i_{1}\right)^{\prime}(\bmod 255), \\
& i_{5} \equiv i_{1}+\left(i_{3}-i_{1}\right)^{\prime}(\bmod 255), \\
& i_{6} \equiv i_{2}+\left(i_{3}-i_{2}\right)^{\prime}(\bmod 255),
\end{aligned}
$$

and

$$
i_{7} \equiv i_{3}+\left(i_{4}-i_{3}\right)^{\prime}(\bmod 255) .
$$

Then the first entries of $S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{7}}$ are the nonzero vectors in a 3 -dimensional subspace of V. Similarly, for any $0 \leq t \leq 2$,

$$
\{0\} \cup\left\{\alpha^{i_{j}+85 t}: 1 \leq j \leq 7\right\}
$$

is a 3 -dimensional subspace of V.
In Examples 11-19 in Section 3, each of the sets in \mathcal{B} consists of 7 triplets $S_{i_{j}}$ obtained in this manner. For instance, if $i_{1}=0, i_{2}=1$, and $i_{3}=2$, then

$$
\begin{aligned}
& i_{4}=0+(1-0)^{\prime}=25, \\
& i_{5}=0+(2-0)^{\prime}=50, \\
& i_{6}=1+(2-1)^{\prime}=1+25=26,
\end{aligned}
$$

and

$$
i_{7}=2+(25-2)^{\prime}=2+196=198 .
$$

So the respective entries of $S_{0}, S_{1}, S_{2}, S_{25}, S_{26}, S_{50}$, and S_{198} are the nonzero vectors in a 3 -dimensional subspace of V, and thus

$$
\left\{0, \alpha^{85 k}, \alpha^{1+85 k}, \alpha^{2+85 k}, \alpha^{25+85 k}, \alpha^{26+85 k}, \alpha^{50+85 k}, \alpha^{198+85 k}\right\}
$$

is a 3 -dimensional subspace of V for $0 \leq k \leq 2$.
We now prove the following lemma, which relies on Examples 11-19 in Section 3.

Lemma 6. Let a, b, and c be nonnegative integers such that $(a, b, c) \neq$ $(13,6,6)$. Then there exists a $4^{a} 3^{b} 2^{c}$-partition of $V=V(8,2)$ if and only if conditions (1), (2), and (3) hold.

Proof. The triplets (a, b, c) for which there exist $4^{a} 3^{b} 2^{c}$-partitions of V satisfying the hypothesis of Theorem 1 are arranged in Table 2.

(a, b, c)	Range	Exp.
$T(1, i, j)=(17-i, 0,5 i)$	$0 \leq i \leq 17$	11
$T(2, i, j)=(14-i, 3-3 j, 5 i+7 j+8)$	$0 \leq i \leq 14,0 \leq j \leq 1$	12
$T(3, i, j)=(12-i, 6-3 j, 5 i+7 j+11)$	$0 \leq i \leq 12,0 \leq j \leq 2$	13
$T(4, i, j)=(11-i, 9-3 j, 5 i+7 j+9)$	$0 \leq i \leq 11,0 \leq j \leq 3$	14
$T(5, i, j)=(10-i, 15-3 j, 5 i+7 j)$	$0 \leq i \leq 10,0 \leq j \leq 5$	15
$T(6, i, j)=(7-i, 18-3 j, 5 i+7 j+8)$	$0 \leq i \leq 7,0 \leq j \leq 6$	16
$T(7, i, j)=(6-i, 21-3 j, 5 i+7 j+6)$	$0 \leq i \leq 6,0 \leq j \leq 7$	17
$T(8, i, j)=(4-i, 24-3 j, 5 i+7 j+9)$	$0 \leq i \leq 4,0 \leq j \leq 8$	18
$T(9, i, j)=(3-i, 30-3 j, 5 i+7 j)$	$0 \leq i \leq 3,0 \leq j \leq 10$	19

Table 2. The potential $4^{a} 3^{b} 2^{c}$-partitions of V

All the partitions in Table 2 can be constructed from 9 special partitions: the $4^{a} 3^{b} 2^{c}$-partitions of V, where $(a, b, c)=T(k, 0,0)$ and $1 \leq k \leq 9$. These partitions are given by Examples 11-19 in Section 3 .
2.3. Nonexistence of a $4^{13} 3^{6} 2^{6}$-partition of $V(8,2)$. The third and last piece in the proof of Theorem 1 is the proof of the following result.

Theorem 7. There is no $4^{13} 3^{6} 2^{6}$-partition of $V=V(8,2)$.
We require several lemmas for the proof. The family of all subspaces of V of dimension 7 plays a fundamental role and is denoted by \mathcal{H}.

Lemma 8. Let $V=V(n, q)$.
(i) The number of subspaces of dimension $n-1$, as well as the number of subspaces of dimension 1 , in V is $\left(q^{n}-1\right) /(q-1)$. In particular, $|\mathcal{H}|=2^{8}-1=255$.
(ii) Any subspace U of V of dimension d is contained in exactly $2^{8-d}-1$ members of \mathcal{H}.

Proof. To prove (i), note that in V, each subspace H of dimension $n-1$ corresponds by duality to a unique subspace of dimension 1 .

We now prove (ii). A subspace U of V is contained in H if and only if $H^{\perp} \subseteq U^{\perp}$. Because $\operatorname{dim}\left(U^{\perp}\right)=8-d$ and $\operatorname{dim}\left(H^{\perp}\right)=1$ if and only if H belongs to \mathcal{H}, the result follows from part (i) of the lemma.

Lemma 9. To any two subspaces U^{\prime} and $U^{\prime \prime}$ of V of dimensions d^{\prime} and $d^{\prime \prime}$ satisfying $U^{\prime} \cap U^{\prime \prime}=\{0\}$, there are exactly $2^{8-d^{\prime}-d^{\prime \prime}}-1$ members H of \mathcal{H} such that

$$
U^{\prime} \subseteq H \quad \text { and } \quad U^{\prime \prime} \subseteq H
$$

Proof. The dimension of U, the linear span of the elements of U^{\prime} and $U^{\prime \prime}$, equals $d=d^{\prime}+d^{\prime \prime}$. Because any vector space containing both U^{\prime} and $U^{\prime \prime}$ must contain U, the result follows from Lemma 8.

Lemma 10. Assume that \mathcal{P} is a $4^{13} 3^{6} 2^{6}$-partition of $V=V(8,2)$ and H is any member of \mathcal{H}. If H contains exactly a, b, and c subspaces of dimensions 4, 3, and 2 from \mathcal{P}, respectively, then

$$
8 a+4 b+2 c=12
$$

Proof. For $H \in \mathcal{H}$, it is easily seen that $\mathcal{P}_{H}=\{U \cap H: U \in \mathcal{P}\}$ is a partition of H. Moreover, for any subspace U of V, either

$$
U \subseteq H \quad \text { or } \quad \operatorname{dim}(U \cap H)=\operatorname{dim}(U)-1
$$

Because every subspace of V of dimension d contains $2^{d}-1$ nonzero elements and every nonzero element of H is contained in a unique subspace in \mathcal{P}, we see that \mathcal{P}_{H} is of type $4^{a} 3^{b+(13-a)} 2^{c+(6-b)} 1^{6-c}$. Hence $127=|H \backslash\{0\}|=a \cdot 15+[b+(13-a)] \cdot 7+[c+(6-b)] \cdot 3+(6-c) \cdot 1$, which reduces to the equation of the lemma.

Clearly the only possibilities for the triples (a, b, c) in Lemma 10 are $(1,1,0), \quad(1,0,2), \quad(0,3,0), \quad(0,2,2), \quad(0,1,4), \quad$ and $\quad(0,0,6)$.
Let $s(a, b, c)$ denote the number of members of \mathcal{H} that contain exactly a, b, and c subspaces of dimensions 4,3 , and 2 from \mathcal{P}, respectively. For example,

$$
\begin{equation*}
s(0,1,4)=0, \tag{5}
\end{equation*}
$$

because if $H \in \mathcal{H}$ contains exactly 0,1 , and 4 subspaces of dimensions 4,3 , and 2 from \mathcal{P}, respectively, then \mathcal{P}_{H} would be of type $3^{14} 2^{9} 1^{2}$, in contradiction of condition (3). Furthermore,

$$
\begin{equation*}
s(0,0,6) \leq 7, \tag{6}
\end{equation*}
$$

for the 18 nonzero vectors in the six 2 -dimensional subspaces in \mathcal{P} must span a subspace S with dimension at least 5 , so that S is contained in at most 7 members of \mathcal{H} by Lemma 8 .

Proof of Theorem 7. Assume that there is a $4^{13} 3^{6} 2^{6}$-partition \mathcal{P} of $V(8,2)$. No two subspaces of dimension 4 in \mathcal{P} can be subspaces of the same member of \mathcal{H}. Thus if we count the members of \mathcal{H} that contain at least one (or, in fact, exactly one) subspace of dimension 4 in \mathcal{P}, we obtain by Lemma 8

$$
\begin{equation*}
s(1,1,0)+s(1,0,2)=13\left(2^{8-4}-1\right)=195 . \tag{7}
\end{equation*}
$$

The number of triples $\left(U_{i}, U_{j}, H\right)$, where U_{i} and U_{j} are distinct subspaces of dimension 3 in \mathcal{P} and H is a member of \mathcal{H} that contains both these subspaces, is

$$
\binom{6}{2}\left(2^{8-3-3}-1\right)=45
$$

by Lemma 9. Counting these same triples starting with a member of \mathcal{H}, we thus obtain

$$
\binom{3}{2} s(0,3,0)+s(0,2,2)=45
$$

so that

$$
\begin{equation*}
s(0,3,0)+s(0,2,2) \leq 45 \tag{8}
\end{equation*}
$$

By combining the results of (7), (8), (5), and (6), we see that the number of elements of \mathcal{H} is

$$
\begin{gathered}
(s(1,1,0)+s(1,0,2))+(s(0,3,0)+s(0,2,2))+s(0,1,4)+s(0,0,6) \\
\leq 195+45+0+7=247
\end{gathered}
$$

which is a contradiction of Lemma 8.

3. Examples of $4^{a} 3^{b} 2^{c}$-Partitions

Let $V=V(8,2)$. In Examples 11-19 below, the given sets \mathcal{A}, \mathcal{B}, and C satisfy properties (i)-(v) below (see Section 2.2).
(i) The sets in $\{A: A \in \mathcal{A}\},\{B: B \in \mathcal{B}\}$, and $\{C\}$ form a partition of \mathbb{Z}_{85}.
(ii) For each $A \in \mathcal{A}$,

$$
W^{(A)}=\{0\} \cup\left\{\alpha^{i+85 k}: i \in A, 0 \leq k \leq 2\right\}
$$

is a 4-dimensional subspace of V.
(iii) For each $B \in \mathcal{B}$ and each $0 \leq k \leq 2$,

$$
W^{(B, k)}=\{0\} \cup\left\{\alpha^{i+85 k}: i \in B\right\}
$$

is a 3 -dimensional subspace of V.
(iv) For each $t \in A \in \mathcal{A}, W_{t}^{(A)}=\{0\} \cup \alpha^{t} H$ is a 2-dimensional subspace of V. Similarly, for each $t \in B \in \mathcal{B}, W_{t}^{(B)}=\{0\} \cup \alpha^{t} H$ is a 2-dimensional subspace of V, and for each $t \in C, W_{t}^{(C)}=$ $\{0\} \cup \alpha^{t} H$ is a 2-dimensional subspace of V.
(v) It follows from properties (i)-(iv) and Lemma 5 that the subspaces generated by \mathcal{A}, \mathcal{B}, and C (via (ii)-(iv)) in each of Examples 11-19 form a vector space partition of V.
By properties (i)-(v), it follows that

$$
\left\{W^{(A)}: A \in \mathcal{A}\right\} \cup\left\{W^{(B, k)}: B \in \mathcal{B}, 0 \leq k \leq 2\right\} \cup\left\{W_{j}^{(C)}: j \in C\right\}
$$

is a $4^{a} 3^{b} 2^{c}$-partition of V, where $a=|\mathcal{A}|, b=3|\mathcal{B}|$, and $c=|C|$. Moreover, for each $A \in \mathcal{A}$, the 2-dimensional subspaces $W_{t}^{(A)}, t \in$ A, form a vector space partition of the 4-dimensional subspace $W^{(A)}$. Similarly, for each $B \in \mathcal{B}$, the 2-dimensional subspaces $W_{t}^{(B)}$, $t \in$ B, form a vector space partition of the three 3-dimensional subspaces $W^{(B, k)}, 0 \leq k \leq 2$.

These observations yield a $4^{a-i} 3^{b-j} 2^{5 i+7 j+c}$-partition of V for any $0 \leq i \leq a$ and $0 \leq j \leq b$.
Example 11. Partition of type $T(1,0,0)$.

$$
\begin{aligned}
\mathcal{A}= & \{\{7,29,65,72,84\},\{22,31,54,57,59\},\{44,53,76,79,81\},\{1,32,45,46,70\}\}, \\
& \{2,25,28,30,78\},\{3,19,50,63,64\},\{4,35,48,49,73\},\{5,8,10,58,67\}, \\
& \{6,15,38,41,43\},\{9,12,14,62,71\},\{11,42,55,56,80\},\{13,16,18,66,75\}, \\
& \{17,34,51,68,85\},\{20,27,39,47,69\},\{21,24,26,74,83\},\{23,36,37,61,77\}, \\
& \{33,40,52,60,82\}\} .
\end{aligned}
$$

Example 12. Partition of type $T(2,0,0)$.

```
A}={{5,22,39,56,73},{6,29,32,34,82},{7,24,41,58,75},{8,16,38,74,81}
    {9,40,53,54,78},{10,19,42,45,47},{11,12,36,52, 83},{13,59,65,69, 80},
    {14,23,46,49,51},{15,18, 20, 68,77}, {17,30,31, 55,71},{21,57,64,76, 84},
    {27,33,37, 48, 66},{35,44,67,70,72}}.
\mathcal{B}}={{0,1,2,25,26,50,198}}
C={3,4,43,60,61,62,63,79}.
```

Example 13. Partition of type $T(3,0,0)$.

```
A}={{9,45,52,64,72},{4,11,23,31,53},{5,8,10,58,67},{6,15,38,41,43},
    {12, 29, 46, 63, 80}, {13,16,18,66,75}, {17, 20, 22,70,79}, {21, 37,68, 81, 82},
    {24,33,56,59,61},{30,36,40,51, 69},{35,42,54,62, 84},{39,48,71,74,76}}.
\mathcal{B}={{0,1,2,25,26,50,198},{3,49,78,140,168,202, 230}}.
C={7,14,19, 27,34,44,47, 57, 65,73,77}.
```

Example 14. Partition of type $T(4,0,0)$.

```
\mathcal{A}={{1,8,20,28,50},{3,39,46,58,66},{4,21,38,55,72},{5,12,24,32,54},
    {6,23,40,57,74},{7,15,37,73, 80},{9,25,56,69,70},{10, 27,44,61,78},
    {13,30,47,64, 81},{14,31, 48,65, 82}, {22, 29, 41, 49, 71}}.
\mathcal{B}}={{17,18,19,42,43,67,215},{34,35,36,59,60,84,232},{51,52,53,76,77,101,249}}
C={0,2,11,26,33,63,68,75,83}.
```

Example 15. Partition of type $T(5,0,0)$.

```
A}={{1,32,45,46,70},{2,25,28,30,78},{4,35,48,49,73},{6,15,38,41,43}
    {9,12,14,62,71},{11,42,55,56, 80},{13,16,18,66,75},{17,34,51,68, 85},
    {23,36,37,61,77},{33,40,52,60, 82}}.
\mathcal{B}}={{22,53,67,79,105,194,251},{3,26,65,93,132,199,242},{7,59,64,90,104,148,197}
    {10,39, 83, 191, 244, 246, 254}, {31, 54, 58, 135, 154, 214, 227}}.
```

Example 16. Partition of type $T(6,0,0)$.

```
\mathcal { A } = \{ \{ 7 , 2 9 , 6 5 , 7 2 , 8 4 \} , \{ 4 , 2 7 , 3 0 , 3 2 , 8 0 \} , \{ 5 , 2 3 , 6 9 , 7 5 , 7 9 \} , \{ 1 4 , 2 0 , 2 4 , 3 5 , 5 3 \} ,
    {22,31,54, 57, 59},{39,48, 71, 74,76}, {46, 55,78, 81, 83}}.
\mathcal{B}={{0,1,2,25,26,50,198},{8,9,10,33,34,58,206},{11,13,16,47,61,149,236},
    {17,18,19,42,43,67, 215}, {3,40,70,77,106, 182, 219}, {6, 37, 38, 41, 51, 62, 137}}.
C={15,44,56,60,63,68,73, 82}.
```

Example 17. Partition of type $T(7,0,0)$.

```
A}={{7,29,65,72,84},{6,23,40,57,74},{3,49,55,59,70},{4,27,30,32,80}
    {20,56,63,75, 83},{44,53,76,79, 81}}.
\mathcal{B}={{0,1,2,25,26,50,198},{8,9,10,33,34,58, 206},{11,13,16,47,61,149,236},
    {17,18,19,42,43,67,215},{22,39,78,90,145,153,205},{48,54, 82,123,184, 239, 247}
    {15, 52, 62,73, 116, 122, 194}}.
C={12, 21, 41, 46, 51, 71}.
```

Example 18. Partition of type $T(8,0,0)$.
$\mathcal{A}=\{\{12,29,46,63,80\},\{14,31,48,65,82\},\{23,39,70,83,84\},\{40,49,72,75,77\}\}$.
$\mathcal{B}=\{\{0,1,2,25,50,26,198\},\{3,5,6,53,226,30,107\},\{8,9,10,33,58,34,206\}$, $\{11,13,16,61,149,236,47\},\{17,18,19,42,67,43,215\},\{21,24,68,244,122,239,163\}$, $\{27,41,73,251,164,76,224\},\{38,44,51,229,137,156,202\}\}$.
$C=\{4,7,15,20,35,55,57,60,62\}$.

Example 19. Partition of type $T(9,0,0)$.

```
\mathcal{B}={{0,1,2,25,26,50,198},{8,9,10,33,34,58,206},{11,13,16,47,61,149,236},
    {17,18,19, 42, 43, 67, 215}, {21, 23, 24, 48, 71, 125, 244}{3, 49, 78, 140, 168, 202, 230},
    {12,30,77,131, 165,174, 252}, {5,56,69,75,148,155,243},{6,37,38,41,51,62,137}
    {14,15, 20, 39, 112, 153, 205}}.
```

Remark 20. Heden [11] gave lower bounds for the number of subspaces of least dimension in a given partition of $V(n, q)$. The $4^{6} 3^{21} 2^{6}$-partition of $V(8,2)$ in Example 17 shows that the bound in Theorem 1(iii) from [11] is tight.

4. Concluding Remarks

In this section, we give a few remarks regarding the computational aspects involved in the constructions of the $4^{a} 3^{b} 2^{c}$-partitions given in Section 3. In particular, the GAP [8] system along with the GRAPE [15] package made these computations much easier by allowing us to find large cliques in certain graphs.

Let \mathcal{X} be the family of all 5-element subsets $A \subseteq \mathbb{Z}_{255}$ obtained using Construction 1 in Section 2.2. Recall that A yields a 4 -dimensional subspace of $V(8,2)$. Let \mathcal{Y} be the family of all 7-element subsets $B \subseteq$ \mathbb{Z}_{255} obtained using Construction 2 in Section 2.2. Recall that B yields 3 disjoint 3-dimensional subspaces of $V(8,2)$.

For any sub-families $\mathcal{X}^{\prime} \subseteq \mathcal{X}$ and $\mathcal{Y}^{\prime} \subseteq \mathcal{Y}$, consider the graph $G\left(\mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)$ with vertex set

$$
V\left(\mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)=\left\{S(\bmod 85): S \in \mathcal{X}^{\prime} \cup \mathcal{Y}^{\prime}\right\}
$$

and edge set

$$
E\left(\mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)=\left\{\left\{S_{1}, S_{2}\right\}: S_{1}, S_{2} \in V\left(\mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right) \text { and } S_{1} \cap S_{2}=\emptyset\right\} .
$$

Let H be a complete subgraph of $G\left(\mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)$ and define

$$
\begin{aligned}
\mathcal{A} & =\{S \in H:|S|=5\}, \\
\mathcal{B} & =\{S \in H:|S|=7\},
\end{aligned}
$$

and

$$
C=\mathbb{Z}_{85}-\left(\bigcup_{S \in \mathcal{A} \cup \mathcal{B}} S\right)
$$

Then the set families \mathcal{A}, \mathcal{B}, and C yield $4^{a-i} 3^{b-j} 2^{5 i+7 j+c}$-partitions of V, where $0 \leq i \leq a=|\mathcal{A}|, 0 \leq j \leq b=3|\mathcal{B}|$, and $c=|C|$. Note that we can always set $\mathcal{X}^{\prime}=\mathcal{X}$ and $\mathcal{Y}^{\prime}=\mathcal{Y}$, but if we are trying to construct families \mathcal{A}, \mathcal{B}, and C as in the Examples 11-19, we can
select \mathcal{X}^{\prime} and \mathcal{Y}^{\prime} appropriately to reduce the search space for finding a suitable clique in $G(\mathcal{X}, \mathcal{Y})$. For instance, we can choose some $A \in \mathcal{X}$, set $\mathcal{X}_{A}=\{S \in \mathcal{X}: S \cap A=\emptyset\}$, and let $\mathcal{Y}^{\prime}=\emptyset$. Then any clique of size 16 in $G\left(\mathcal{X}_{A}, \emptyset\right)$ together with the set A yield a set family \mathcal{A} of size 17 that can be used in Example 11. All the partitions in Examples 1119 were obtained in this way by using the GAP [8] system and the GRAPE [15] package to search for a suitable clique H.

References

[1] A. Blinco, S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, and C. Vanden Eynden, On Vector space partitions and uniformly resolvable designs, Designs, Codes and Crypt. 15 (2008), 69-77.
[2] T. Bu, Partitions of a vector space, Discrete Math. 31 (1980), 79-83.
[3] W. Clark and L. Dunning, Partial partitions of vector spaces arising from the construction of byte error control codes, Ars Combin. 33 (1992), 161-177.
[4] D. Drake and J. Freeman, Partial t-spreads and group constructible (s, r, μ)nets. J. of Geometry 13 (1979), 211-216.
[5] S. El-Zanati, G. Seelinger, P. Sissokho,L. Spence, and C. Vanden Eynden, On partitions of finite vector spaces of small dimension over GF(2), Discrete Mathematics, 309 (2009), 4727-4735.
[6] S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, and C. Vanden Eynden, Partitions of finite vector spaces into subspaces, Journal of Comb. Designs 16/4 (2008), 329-341.
[7] S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho, and L. Spence, The maximum size of a partial 3 -spread in a finite vector space over $\mathrm{GF}(2)$, Designs, Codes and Crypt., available online.
[8] GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4.10 (2007), http://www.gap-system.org..
[9] O. Heden, Partitions of finite abelian groups, Europ. J. Combin. 7 (1986), 11-25.
[10] O. Heden, Necessary and sufficient conditions for the existence of a class of partitions of a finite vector space, Designs, Codes and Crypt. 53 (2009), 69-73.
[11] O. Heden, On the length of the tail of a vector space partition, Discrete Mathematics, (2009), available online.
[12] M. Herzog and J. Schönheim, Linear and nonlinear single error-correcting perfect mixed codes, Informat. and Control 18 (1971), 364-368.
[13] S. Hong and A. Patel, A general class of maximal codes for computer applications, IEEE Trans. Comput. C-21 (1972), 1322-1331.
[14] B. Lindström, Group partitions and mixed perfect codes, Canad. Math. Bull. 18 (1975), 57-60.
[15] L. Soicher, GRAPE - a GAP package, Version 4.3 (2006), http://www.maths.qmul.ac.uk/~leonard/grape.
[16] R. Wilson, An existence theory for pairwise balanced designs: I, Composition theorems and morphisms, J. Combinatorial Theory (A) 13 (1972), 220-245.
E-mail address: saa@ilstu.edu,olohed@math.kth.se,gfseeli@ilstu.edu
E-mail address: psissok@ilstu.edu,spence@ilstu.edu,cve@ilstu.edu

