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Abstract. Let V = V (n, q) denote the vector space of dimension
n over GF(q). A set of subspaces of V is called a partition of V if
every nonzero vector in V is contained in exactly one subspace of
V . Given a partition P of V with exactly ai subspaces of dimension
i for 1 ≤ i ≤ n, we have

∑n
i=1 ai(qi − 1) = qn − 1, and we call the

n-tuple (an, an−1, . . . , a1) the type of P. In this paper we identify
all 8-tuples (a8, a7, . . . , a2, 0) that are the types of partitions of
V (8, 2).

1. Introduction

Let n be a positive integer, q a prime power, and V = V (n, q) denote
a vector space of dimension n over the finite field GF(q). A partition
of V is a collection of subspaces U1, U2, . . . , Ut such that

V =
t⋃

i=1

Ui and Ui ∩ Uj = {0} for i 6= j.

Given a partition P of V with exactly ai subspaces of dimension i for
1 ≤ i ≤ n, the following condition holds

(1)
n∑

i=1

ai(q
i − 1) = qn − 1,

and we call the n-tuple (an, an−1, . . . , a1) the type of P . More com-
pactly, we call P an nan(n− 1)an−1 · · · 1a1-partition, and we often omit
factors in this formal product with exponent 0. For example, we
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could call a partition of V (8, 2) into 17 subspaces of dimension 4 a
417-partition.

A second necessary condition for an n-tuple to be a partition type
comes from dimension considerations.

If ai ≥ 2, then i ≤ n/2, and(2)

if i 6= j and aiaj > 0, then i + j ≤ n.

A third condition involves the number of subspaces of least dimension
in the partition P of V (n, q). (See Theorem 3.2 of [1], and for a stronger
condition, see [11].)

If i is the smallest integer such that ai > 0, and i < n,(3)

then ai ≥ qi + 1.

In general, necessary and sufficient conditions for the existence of an
nan · · · 1a1-partition of V (n, q) are not known. Of course, any collec-
tion of pairwise trivially intersecting subspaces can be expanded to a
partition by including subspaces of dimension 1.

There are a few results that characterize vector space partitions of
V (n, q). O. Heden characterized the (n− 3)13a2b-partitions of V (n, 2)
for all n ≥ 9 (see [9]). More recently, he gave necessary and sufficient
conditions for the existence of certain vector space partitions of V (n, q)
for all n ≥ 9 (see [10]). S. El-Zanati et al. characterized the nan · · · 1a1-
partitions of V (n, q) for n ≤ 7 and q = 2 (see [5]), and the 3a2b-
partitions of V (n, 2) for all n ≥ 2 (see [6]).

Vector space partitions have applications in design theory (in par-
ticular, uniformly resolvable designs [1]), coding theory (see [3, 12, 13,
14]), and orthogonal arrays (see [4, 7]). The study of vector space par-
titions of V (n, q) for small n and q is important in providing a rich
set of examples and in supporting more general results. For instance,
the partitions in this paper establish the tightness of bounds, obtained
by Heden [11] (see Remark 20). Moreover, the constructions of vector
space partitions of V (n, q) for small n provide base cases for recursive
constructions with larger values of n (see [6, 9]). This is similar to the
situation in t-(v, k, λ) designs where the designs with small parameters
provide the building blocks for recursive constructions (e.g., [16]).

In this paper, we prove the following theorem.

Theorem 1. With one exception, an 8a87a7 · · · 2a210-partition of V (8, 2)
exists if and only if the feasibility conditions (1), (2), and (3) are sat-
isfied. The exception is that there is no 4133626-partition of V (8, 2).

This paper is organized as follows. In Section 2.1, we characterize
the 8a87a7 · · · 2a210-partitions of V (8, 2) with a5 ≥ 1. In Section 2.2
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and Section 3, we construct all feasible 4a3b2c-partitions of V (8, 2)
with (a, b, c) 6= (13, 6, 6). We then show in Section 2.3 that there is
no 4133626-partition of V (8, 2). Finally, we discuss in Section 4 the
computational aspects of our constructions.

2. Proof of Theorem 1

The proof of Theorem 1 has three main parts, which we consider in
the following sections.

2.1. Partitions with a subspace of dimension at least 5. We
begin with two known results.

Lemma 2 ([2], Lemma 4). Let n and d be integers such that 1 ≤ d ≤
n/2. Then V (n, q) can be partitioned into one subspace of dimension
n− d and qn−d subspaces of dimension d.

Lemma 3 ([6], Theorem 6.1). Suppose that a, b, and c are nonnegative
integers that satisfy 31a + 7b + 3c = 28− 1. Then V (8, 2) has a 5a3b2c-
partition unless such a partition is ruled out by conditions (2) or (3).

The following lemma constitutes the first part of the proof of Theo-
rem 1.

Lemma 4. Let a2, . . . , a8 be nonnegative integers such that a5 + a6 +
a7 + a8 ≥ 1. Then there exists an 8a87a7 · · · 2a210-partition of V (8, 2) if
and only if conditions (1), (2), and (3) hold.

Proof. From condition (2), it follows that a5 + a6 + a7 + a8 = 1. There
is the trivial 81-partition, but a7 = 1 is ruled out by conditions (2)
and (3). If a6 = 1, then only a 61264-partition is possible by the three
conditions, and this exists by Lemma 2. Finally, if a5 = 1, then a4 = 0
by condition (2) and 31a5 + 7a3 + 3a2 = 28 − 1 by condition (1).
Partitions of all such types exist by Lemma 3. �

2.2. Partitions with subspaces of dimension at most 4. The
second piece in the proof of Theorem 1 deals with the 4a3b2c-partitions
of V = V (8, 2). To explain their constructions, we start with the
following setup. Let F = GF(256) be the field with 256 elements
generated by the irreducible polynomial x8 + x4 + x3 + x2 + 1. Take
α to be x, and let G = {αi : 0 ≤ i ≤ 254} be the multiplicative
group of nonzero elements of F . Consider the multiplicative subgroup
H = {1, α85, α2·85} of G. Then H ∪ {0} = GF(4) is a 2-dimensional
subspace of V . It is also easy to see that the cosets of H, namely
H, αH, . . . , α84H, form (with 0 added to each) a 285-partition of V .
For any integer r not divisible by 255, define r′ as that integer j, 0 ≤
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j ≤ 254, such that 1 + αr = αj. (Note that 1 + α0 = 0, which is not a
power of α, or even in G.) Then for any integers i and j not congruent
modulo 255, αi +αj = αi(1+αj−i) = αiα(j−i)′ = αi+(j−i)′ . For instance
1′ = 25 and 2′ = 50. Moreover, since 1 + αr = αr′ yields 1 + αr′ = αr,
we have (r′)′ = r. Table 1 shows the pairs (r, r′), 1 ≤ r ≤ r′ ≤ 254; and
it can be easily generated using mathematical software (e.g., Maple).

(1, 25) (2, 50) (3, 223) (4, 100) (5, 138) (6, 191) (7, 112)
(8, 200) (9, 120) (10, 21) (11, 245) (12, 127) (13, 99) (14, 224)
(15, 33) (16, 145) (17, 68) (18, 240) (19, 92) (20, 42) (21, 10)
(22, 235) (23, 196) (24, 254) (25, 1) (26, 198) (27, 104) (28, 193)
(29, 181) (30, 66) (31, 45) (32, 35) (33, 15) (34, 136) (35, 32)
(36, 225) (37, 179) (38, 184) (39, 106) (40, 84) (41, 157) (42, 20)
(43, 121) (44, 215) (45, 31) (46, 137) (47, 101) (48, 253) (49, 197)
(50, 2) (51, 238) (52, 141) (53, 147) (54, 208) (55, 63) (56, 131)
(57, 83) (58, 107) (59, 82) (60, 132) (61, 186) (62, 90) (63, 55)
(64, 70) (65, 162) (66, 30) (67, 216) (68, 17) (69, 130) (70, 64)
(71, 109) (72, 195) (73, 236) (74, 103) (75, 199) (76, 113) (77, 228)
(78, 212) (79, 174) (80, 168) (81, 160) (82, 59) (83, 57) (84, 40)
(85, 170) (86, 242) (87, 167) (88, 175) (89, 203) (90, 62) (91, 209)
(92, 19) (93, 158) (94, 202) (95, 176) (96, 251) (97, 190) (98, 139)
(99, 13) (100, 4) (101, 47) (102, 221) (103, 74) (104, 27) (105, 248)
(106, 39) (107, 58) (108, 161) (109, 71) (110, 126) (111, 246) (112, 7)
(113, 76) (114, 166) (115, 243) (116, 214) (117, 122) (118, 164) (119, 153)
(120, 9) (121, 43) (122, 117) (123, 183) (124, 180) (125, 194) (126, 110)
(127, 12) (128, 140) (129, 239) (130, 69) (131, 56) (132, 60) (133, 250)
(134, 177) (135, 144) (136, 34) (137, 46) (138, 5) (139, 98) (140, 128)
(141, 52) (142, 218) (143, 150) (144, 135) (145, 16) (146, 217) (147, 53)
(148, 206) (149, 188) (150, 143) (151, 178) (152, 226) (153, 119) (154, 201)
(155, 159) (156, 169) (157, 41) (158, 93) (159, 155) (160, 81) (161, 108)
(162, 65) (163, 182) (164, 118) (165, 227) (166, 114) (167, 87) (168, 80)
(169, 156) (170, 85) (171, 211) (172, 229) (173, 232) (174, 79) (175, 88)
(176, 95) (177, 134) (178, 151) (179, 37) (180, 124) (181, 29) (182, 163)
(183, 123) (184, 38) (185, 249) (186, 61) (187, 204) (188, 149) (189, 219)
(190, 97) (191, 6) (192, 247) (193, 28) (194, 125) (195, 72) (196, 23)
(197, 49) (198, 26) (199, 75) (200, 8) (201, 154) (202, 94) (203, 89)
(204, 187) (205, 207) (206, 148) (207, 205) (208, 54) (209, 91) (210, 241)
(211, 171) (212, 78) (213, 233) (214, 116) (215, 44) (216, 67) (217, 146)
(218, 142) (219, 189) (220, 252) (221, 102) (222, 237) (223, 3) (224, 14)
(225, 36) (226, 152) (227, 165) (228, 77) (229, 172) (230, 231) (231, 230)
(232, 173) (233, 213) (234, 244) (235, 22) (236, 73) (237, 222) (238, 51)
(239, 129) (240, 18) (241, 210) (242, 86) (243, 115) (244, 234) (245, 11)
(246, 111) (247, 192) (248, 105) (249, 185) (250, 133) (251, 96) (252, 220)
(253, 48) (254, 24)

Table 1. All pairs (r, r′) with 1 + αr = αr′ in GF(256).

For any integer i, let Si be the 3-tuple (αi, αi+85, αi+2·85), where the
powers of α are taken modulo 255. For example, S0 = (1, α85, α170),
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S1 = (α, α86, α171), and S25 = (α25, α110, α195). We define the addition
of these 3-tuples to be coordinatewise addition, so that, for 1 ≤ t ≤ 3,
entry t of Si + Sj is

(4) αi+85(t−1) + αj+85(t−1) = αi+85(t−1)+(j−i)′ = αi+(j−i)′+85(t−1).

Thus Si+Sj = Si+(j−i)′ and this addition is associative. Observe that
if i ≡ j (mod 85), then Si and Sj contain the same entries (those of
αiH), but in a different cyclic order unless i ≡ j (mod 255). However,
if i 6≡ j (mod 85), we use the following well-known lemma to guarantee
that the subspaces generated by combining entries from the Si’s have
intersection {0}.
Lemma 5. Let i and j be two integers such that i 6≡ j (mod 85). Then
the entries in Si and Sj are pairwise distinct. That is

αiH ∩ αjH = {αi, αi+85, αi+2·85} ∩ {αj, αj+85, αj+2·85} = ∅.
For any i and j such that i 6≡ j (mod 85), it follows from Lemma 5

that the entries of Si and Sj span 2-dimensional subspaces of V with
intersection {0}. In the following, we provide a construction that re-
configures the entries of five Si’s into one 4-dimensional subspace and
another one that reconfigures the entries of seven Si’s into three 3-
dimensional subspaces.

Construction 1: Let W denote the 4-dimensional subspace of V
spanned by the entries of Si and Sj, and suppose that αk is a nonzero
vector in W that is not an entry of Si or Sj. Then there exist inte-
gers p and q such that αp is an entry of Si, αq is an entry of Sj, and
αp + αq = αk. Because of equation (4), each of the entries of Sk is a
vector in W . Thus the nonzero vectors in W are the entries of five of
the 3-tuples Sr. Specifically, the nonzero vectors in W are the entries
of Si, Sj, Sb, Sc, and Sd, where

b ≡ i + (j − i)′ (mod 85),

c ≡ i + (j − i + 85)′ (mod 85),

and

d ≡ i + (j − i + 170)′ (mod 85).

In Examples 11–19 in Section 3, each of the sets in A consists of five
of the Sr obtained in this manner. For instance, if i = 7 and j = 29,
then

b = 7 + (29− 7)′ = 7 + 22′ = 7 + 235 = 242 ≡ 72 (mod 85),

c = 7 + (29− 7 + 85)′ = 7 + 107′ = 7 + 58 = 65 (mod 85),



6 EL-ZANATI, HEDEN, SEELINGER, SISSOKHO, SPENCE, VANDEN EYNDEN

and

d = 7 + (29− 7 + 170)′ = 7 + 192′ = 7 + 247 ≡ 84 (mod 85).

Thus the set

{0} ∪
{
αi+85t : i = 7, 29, 65, 72, 84 and 0 ≤ t ≤ 2

}
is a 4-dimensional subspace of V .

Construction 2: We explain a method for constructing 3 disjoint 3-
dimensional subspaces by using the entries of triplets Sij , 1 ≤ j ≤ 7.
Let i1, i2, and i3 be integers such that no two of them are congruent
modulo 85, and i3 6≡ i1 + (i2 − i1)

′ (mod 255). Let i4, i5, i6, and i7 be
such that:

i4 ≡ i1 + (i2 − i1)
′ (mod 255),

i5 ≡ i1 + (i3 − i1)
′ (mod 255),

i6 ≡ i2 + (i3 − i2)
′ (mod 255),

and

i7 ≡ i3 + (i4 − i3)
′ (mod 255).

Then the first entries of Si1 , Si2 , . . . , Si7 are the nonzero vectors in a
3-dimensional subspace of V . Similarly, for any 0 ≤ t ≤ 2,{

0} ∪ {αij+85t : 1 ≤ j ≤ 7
}

is a 3-dimensional subspace of V .
In Examples 11–19 in Section 3, each of the sets in B consists of 7

triplets Sij obtained in this manner. For instance, if i1 = 0, i2 = 1,
and i3 = 2, then

i4 = 0 + (1− 0)′ = 25,

i5 = 0 + (2− 0)′ = 50,

i6 = 1 + (2− 1)′ = 1 + 25 = 26,

and

i7 = 2 + (25− 2)′ = 2 + 196 = 198.

So the respective entries of S0, S1, S2, S25, S26, S50, and S198 are the
nonzero vectors in a 3-dimensional subspace of V , and thus{

0, α85k, α1+85k, α2+85k, α25+85k, α26+85k, α50+85k, α198+85k
}

is a 3-dimensional subspace of V for 0 ≤ k ≤ 2.
We now prove the following lemma, which relies on Examples 11–19

in Section 3.
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Lemma 6. Let a, b, and c be nonnegative integers such that (a, b, c) 6=
(13, 6, 6). Then there exists a 4a3b2c-partition of V = V (8, 2) if and
only if conditions (1), (2), and (3) hold.

Proof. The triplets (a, b, c) for which there exist 4a3b2c-partitions of V
satisfying the hypothesis of Theorem 1 are arranged in Table 2.

(a, b, c) Range Exp.

T (1, i, j) = (17− i, 0, 5i) 0 ≤ i ≤ 17 11
T (2, i, j) = (14− i, 3− 3j, 5i + 7j + 8) 0 ≤ i ≤ 14, 0 ≤ j ≤ 1 12
T (3, i, j) = (12− i, 6− 3j, 5i + 7j + 11) 0 ≤ i ≤ 12, 0 ≤ j ≤ 2 13
T (4, i, j) = (11− i, 9− 3j, 5i + 7j + 9) 0 ≤ i ≤ 11, 0 ≤ j ≤ 3 14
T (5, i, j) = (10− i, 15− 3j, 5i + 7j) 0 ≤ i ≤ 10, 0 ≤ j ≤ 5 15
T (6, i, j) = (7− i, 18− 3j, 5i + 7j + 8) 0 ≤ i ≤ 7, 0 ≤ j ≤ 6 16
T (7, i, j) = (6− i, 21− 3j, 5i + 7j + 6) 0 ≤ i ≤ 6, 0 ≤ j ≤ 7 17
T (8, i, j) = (4− i, 24− 3j, 5i + 7j + 9) 0 ≤ i ≤ 4, 0 ≤ j ≤ 8 18
T (9, i, j) = (3− i, 30− 3j, 5i + 7j) 0 ≤ i ≤ 3, 0 ≤ j ≤ 10 19

Table 2. The potential 4a3b2c-partitions of V

All the partitions in Table 2 can be constructed from 9 special par-
titions: the 4a3b2c-partitions of V , where (a, b, c) = T (k, 0, 0) and
1 ≤ k ≤ 9. These partitions are given by Examples 11–19 in Sec-
tion 3. �

2.3. Nonexistence of a 4133626-partition of V (8, 2). The third and
last piece in the proof of Theorem 1 is the proof of the following result.

Theorem 7. There is no 4133626-partition of V = V (8, 2).

We require several lemmas for the proof. The family of all subspaces
of V of dimension 7 plays a fundamental role and is denoted by H.

Lemma 8. Let V = V (n, q).
(i) The number of subspaces of dimension n− 1, as well as the number
of subspaces of dimension 1, in V is (qn − 1)/(q − 1). In particular,
|H| = 28 − 1 = 255.
(ii) Any subspace U of V of dimension d is contained in exactly 28−d−1
members of H.

Proof. To prove (i), note that in V , each subspace H of dimension n−1
corresponds by duality to a unique subspace of dimension 1.
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We now prove (ii). A subspace U of V is contained in H if and only
if H⊥ ⊆ U⊥. Because dim(U⊥) = 8− d and dim(H⊥) = 1 if and only
if H belongs to H, the result follows from part (i) of the lemma. �

Lemma 9. To any two subspaces U ′ and U ′′ of V of dimensions d′ and
d′′ satisfying U ′ ∩ U ′′ = {0}, there are exactly 28−d′−d′′ − 1 members H
of H such that

U ′ ⊆ H and U ′′ ⊆ H.

Proof. The dimension of U , the linear span of the elements of U ′ and
U ′′, equals d = d′ + d′′. Because any vector space containing both U ′

and U ′′ must contain U , the result follows from Lemma 8 . �

Lemma 10. Assume that P is a 4133626-partition of V = V (8, 2) and
H is any member of H. If H contains exactly a, b, and c subspaces of
dimensions 4, 3, and 2 from P, respectively, then

8a + 4b + 2c = 12.

Proof. For H ∈ H, it is easily seen that PH = {U ∩ H : U ∈ P} is a
partition of H. Moreover, for any subspace U of V , either

U ⊆ H or dim(U ∩H) = dim(U)− 1.

Because every subspace of V of dimension d contains 2d − 1 nonzero
elements and every nonzero element of H is contained in a unique
subspace in P , we see that PH is of type 4a3b+(13−a)2c+(6−b)16−c. Hence

127 = |H \ {0}| = a · 15 + [b + (13− a)] · 7 + [c + (6− b)] · 3 + (6− c) · 1,
which reduces to the equation of the lemma. �

Clearly the only possibilities for the triples (a, b, c) in Lemma 10 are

(1, 1, 0), (1, 0, 2), (0, 3, 0), (0, 2, 2), (0, 1, 4), and (0, 0, 6).

Let s(a, b, c) denote the number of members of H that contain exactly
a, b, and c subspaces of dimensions 4, 3, and 2 from P , respectively.
For example,

(5) s(0, 1, 4) = 0,

because if H ∈ H contains exactly 0, 1, and 4 subspaces of dimensions
4, 3, and 2 from P , respectively, then PH would be of type 3142912, in
contradiction of condition (3). Furthermore,

(6) s(0, 0, 6) ≤ 7,

for the 18 nonzero vectors in the six 2-dimensional subspaces in P must
span a subspace S with dimension at least 5, so that S is contained in
at most 7 members of H by Lemma 8.
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Proof of Theorem 7. Assume that there is a 4133626-partition P of
V (8, 2). No two subspaces of dimension 4 in P can be subspaces of the
same member of H. Thus if we count the members of H that contain
at least one (or, in fact, exactly one) subspace of dimension 4 in P , we
obtain by Lemma 8

(7) s(1, 1, 0) + s(1, 0, 2) = 13(28−4 − 1) = 195.

The number of triples (Ui, Uj, H), where Ui and Uj are distinct sub-
spaces of dimension 3 in P and H is a member of H that contains both
these subspaces, is (

6

2

)
(28−3−3 − 1) = 45

by Lemma 9. Counting these same triples starting with a member of
H, we thus obtain (

3

2

)
s(0, 3, 0) + s(0, 2, 2) = 45,

so that

(8) s(0, 3, 0) + s(0, 2, 2) ≤ 45.

By combining the results of (7), (8), (5), and (6), we see that the
number of elements of H is

(s(1, 1, 0) + s(1, 0, 2)) + (s(0, 3, 0) + s(0, 2, 2)) + s(0, 1, 4) + s(0, 0, 6)

≤ 195 + 45 + 0 + 7 = 247,

which is a contradiction of Lemma 8. �

3. Examples of 4a3b2c-partitions

Let V = V (8, 2). In Examples 11–19 below, the given sets A, B,
and C satisfy properties (i)–(v) below (see Section 2.2).

(i) The sets in {A : A ∈ A}, {B : B ∈ B}, and {C} form a
partition of Z85.

(ii) For each A ∈ A,

W (A) = {0} ∪ {αi+85k : i ∈ A, 0 ≤ k ≤ 2}

is a 4-dimensional subspace of V .
(iii) For each B ∈ B and each 0 ≤ k ≤ 2,

W (B,k) = {0} ∪ {αi+85k : i ∈ B}

is a 3-dimensional subspace of V .
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(iv) For each t ∈ A ∈ A, W
(A)
t = {0} ∪ αtH is a 2-dimensional

subspace of V . Similarly, for each t ∈ B ∈ B, W
(B)
t = {0}∪αtH

is a 2-dimensional subspace of V , and for each t ∈ C, W
(C)
t =

{0} ∪ αtH is a 2-dimensional subspace of V .
(v) It follows from properties (i)–(iv) and Lemma 5 that the sub-

spaces generated by A, B, and C (via (ii)–(iv)) in each of Ex-
amples 11–19 form a vector space partition of V .

By properties (i)-(v), it follows that{
W (A) : A ∈ A

}
∪{W (B,k) : B ∈ B, 0 ≤ k ≤ 2}∪{W (C)

j : j ∈ C}

is a 4a3b2c-partition of V , where a = |A|, b = 3|B|, and c = |C|.
Moreover, for each A ∈ A, the 2-dimensional subspaces W

(A)
t , t ∈

A, form a vector space partition of the 4-dimensional subspace W (A).

Similarly, for each B ∈ B, the 2-dimensional subspaces W
(B)
t , t ∈

B, form a vector space partition of the three 3-dimensional subspaces
W (B,k), 0 ≤ k ≤ 2.

These observations yield a 4a−i3b−j25i+7j+c-partition of V for any
0 ≤ i ≤ a and 0 ≤ j ≤ b.

Example 11. Partition of type T (1, 0, 0).

A = {{7, 29, 65, 72, 84}, {22, 31, 54, 57, 59}, {44, 53, 76, 79, 81}, {1, 32, 45, 46, 70}},
{2, 25, 28, 30, 78}, {3, 19, 50, 63, 64}, {4, 35, 48, 49, 73}, {5, 8, 10, 58, 67},
{6, 15, 38, 41, 43}, {9, 12, 14, 62, 71}, {11, 42, 55, 56, 80}, {13, 16, 18, 66, 75},
{17, 34, 51, 68, 85}, {20, 27, 39, 47, 69}, {21, 24, 26, 74, 83}, {23, 36, 37, 61, 77},
{33, 40, 52, 60, 82}}.

Example 12. Partition of type T (2, 0, 0).

A = {{5, 22, 39, 56, 73}, {6, 29, 32, 34, 82}, {7, 24, 41, 58, 75}, {8, 16, 38, 74, 81},
{9, 40, 53, 54, 78}, {10, 19, 42, 45, 47}, {11, 12, 36, 52, 83}, {13, 59, 65, 69, 80},
{14, 23, 46, 49, 51}, {15, 18, 20, 68, 77}, {17, 30, 31, 55, 71}, {21, 57, 64, 76, 84},
{27, 33, 37, 48, 66}, {35, 44, 67, 70, 72}}.

B = {{0, 1, 2, 25, 26, 50, 198}}.
C = {3, 4, 43, 60, 61, 62, 63, 79}.

Example 13. Partition of type T (3, 0, 0).

A = {{9, 45, 52, 64, 72}, {4, 11, 23, 31, 53}, {5, 8, 10, 58, 67}, {6, 15, 38, 41, 43},
{12, 29, 46, 63, 80}, {13, 16, 18, 66, 75}, {17, 20, 22, 70, 79}, {21, 37, 68, 81, 82},
{24, 33, 56, 59, 61}, {30, 36, 40, 51, 69}, {35, 42, 54, 62, 84}, {39, 48, 71, 74, 76}}.

B = {{0, 1, 2, 25, 26, 50, 198}, {3, 49, 78, 140, 168, 202, 230}}.
C = {7, 14, 19, 27, 34, 44, 47, 57, 65, 73, 77}.
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Example 14. Partition of type T (4, 0, 0).

A = {{1, 8, 20, 28, 50}, {3, 39, 46, 58, 66}, {4, 21, 38, 55, 72}, {5, 12, 24, 32, 54},
{6, 23, 40, 57, 74}, {7, 15, 37, 73, 80}, {9, 25, 56, 69, 70}, {10, 27, 44, 61, 78},
{13, 30, 47, 64, 81}, {14, 31, 48, 65, 82}, {22, 29, 41, 49, 71}}.

B = {{17, 18, 19, 42, 43, 67, 215}, {34, 35, 36, 59, 60, 84, 232}, {51, 52, 53, 76, 77, 101, 249}}.
C = {0, 2, 11, 26, 33, 63, 68, 75, 83}.

Example 15. Partition of type T (5, 0, 0).

A = {{1, 32, 45, 46, 70}, {2, 25, 28, 30, 78}, {4, 35, 48, 49, 73}, {6, 15, 38, 41, 43},
{9, 12, 14, 62, 71}, {11, 42, 55, 56, 80}, {13, 16, 18, 66, 75}, {17, 34, 51, 68, 85},
{23, 36, 37, 61, 77}, {33, 40, 52, 60, 82}}.

B = {{22, 53, 67, 79, 105, 194, 251}, {3, 26, 65, 93, 132, 199, 242}, {7, 59, 64, 90, 104, 148, 197},
{10, 39, 83, 191, 244, 246, 254}, {31, 54, 58, 135, 154, 214, 227}}.

Example 16. Partition of type T (6, 0, 0).

A = {{7, 29, 65, 72, 84}, {4, 27, 30, 32, 80}, {5, 23, 69, 75, 79}, {14, 20, 24, 35, 53},
{22, 31, 54, 57, 59}, {39, 48, 71, 74, 76}, {46, 55, 78, 81, 83}}.

B = {{0, 1, 2, 25, 26, 50, 198}, {8, 9, 10, 33, 34, 58, 206}, {11, 13, 16, 47, 61, 149, 236},
{17, 18, 19, 42, 43, 67, 215}, {3, 40, 70, 77, 106, 182, 219}, {6, 37, 38, 41, 51, 62, 137}}.

C = {15, 44, 56, 60, 63, 68, 73, 82}.

Example 17. Partition of type T (7, 0, 0).

A = {{7, 29, 65, 72, 84}, {6, 23, 40, 57, 74}, {3, 49, 55, 59, 70}, {4, 27, 30, 32, 80},
{20, 56, 63, 75, 83}, {44, 53, 76, 79, 81}}.

B = {{0, 1, 2, 25, 26, 50, 198}, {8, 9, 10, 33, 34, 58, 206}, {11, 13, 16, 47, 61, 149, 236},
{17, 18, 19, 42, 43, 67, 215}, {22, 39, 78, 90, 145, 153, 205}, {48, 54, 82, 123, 184, 239, 247}
{15, 52, 62, 73, 116, 122, 194}}.

C = {12, 21, 41, 46, 51, 71}.

Example 18. Partition of type T (8, 0, 0).

A = {{12, 29, 46, 63, 80}, {14, 31, 48, 65, 82}, {23, 39, 70, 83, 84}, {40, 49, 72, 75, 77}} .

B = {{0, 1, 2, 25, 50, 26, 198}, {3, 5, 6, 53, 226, 30, 107}, {8, 9, 10, 33, 58, 34, 206},
{11, 13, 16, 61, 149, 236, 47}, {17, 18, 19, 42, 67, 43, 215}, {21, 24, 68, 244, 122, 239, 163},
{27, 41, 73, 251, 164, 76, 224}, {38, 44, 51, 229, 137, 156, 202}}.

C = {4, 7, 15, 20, 35, 55, 57, 60, 62}.
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Example 19. Partition of type T (9, 0, 0).

A = {{7, 29, 65, 72, 84}, {22, 31, 54, 57, 59}, {44, 53, 76, 79, 81}}.

B = {{0, 1, 2, 25, 26, 50, 198}, {8, 9, 10, 33, 34, 58, 206}, {11, 13, 16, 47, 61, 149, 236},
{17, 18, 19, 42, 43, 67, 215}, {21, 23, 24, 48, 71, 125, 244}{3, 49, 78, 140, 168, 202, 230},
{12, 30, 77, 131, 165, 174, 252}, {5, 56, 69, 75, 148, 155, 243}, {6, 37, 38, 41, 51, 62, 137}
{14, 15, 20, 39, 112, 153, 205}}.

Remark 20. Heden [11] gave lower bounds for the number of subspaces
of least dimension in a given partition of V (n, q). The 4632126-partition
of V (8, 2) in Example 17 shows that the bound in Theorem 1(iii) from [11]
is tight.

4. Concluding Remarks

In this section, we give a few remarks regarding the computa-
tional aspects involved in the constructions of the 4a3b2c-partitions
given in Section 3. In particular, the GAP [8] system along with the
GRAPE [15] package made these computations much easier by allowing
us to find large cliques in certain graphs.

Let X be the family of all 5-element subsets A ⊆ Z255 obtained using
Construction 1 in Section 2.2. Recall that A yields a 4-dimensional
subspace of V (8, 2). Let Y be the family of all 7-element subsets B ⊆
Z255 obtained using Construction 2 in Section 2.2. Recall that B yields
3 disjoint 3-dimensional subspaces of V (8, 2).

For any sub-families X ′ ⊆ X and Y ′ ⊆ Y , consider the graph
G(X ′,Y ′) with vertex set

V (X ′,Y ′) =
{
S (mod 85) : S ∈ X ′ ∪ Y ′}

and edge set

E(X ′,Y ′) =
{
{S1, S2} : S1, S2 ∈ V (X ′,Y ′) and S1 ∩ S2 = ∅

}
.

Let H be a complete subgraph of G(X ′,Y ′) and define

A =
{
S ∈ H : |S| = 5

}
,

B =
{
S ∈ H : |S| = 7

}
,

and

C = Z85 −

( ⋃
S∈A∪B

S

)
.

Then the set families A, B, and C yield 4a−i3b−j25i+7j+c-partitions of
V , where 0 ≤ i ≤ a = |A|, 0 ≤ j ≤ b = 3|B|, and c = |C|. Note
that we can always set X ′ = X and Y ′ = Y , but if we are trying
to construct families A, B, and C as in the Examples 11–19, we can
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select X ′ and Y ′ appropriately to reduce the search space for finding a
suitable clique in G(X ,Y). For instance, we can choose some A ∈ X ,
set XA = {S ∈ X : S ∩A = ∅}, and let Y ′ = ∅. Then any clique of size
16 in G(XA, ∅) together with the set A yield a set family A of size 17
that can be used in Example 11. All the partitions in Examples 11–
19 were obtained in this way by using the GAP [8] system and the
GRAPE [15] package to search for a suitable clique H.
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