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Abstract. Let V denote V (n, q), the vector space of dimension n over
GF(q). A subspace partition of V is a collection Π of subspaces of V
such that every nonzero vector in V is contained in exactly one subspace
belonging to Π. The set P(V ) of all subspace partitions of V is a lattice
with minimum and maximum elements 0 and 1 respectively. In this
paper, we show that the number of elements in P(V ) is congruent to
the number of all set partitions of {1, . . . , n} modulo q − 1. Moreover,
we show that the Möbius number µn,q(0,1) of P(V ) is congruent to
(−1)n−1(n − 1)! (the Möbius number of set partitions of {1, . . . , n})
modulo q − 1.

1. Introduction

Let V denote V (n, q), the vector space of dimension n over GF(q), and
n denote the set {1, . . . , n}, throughout the rest of this article. A subspace
partition of V is a collection Π of subspaces of V such that each nonzero
vector in V is in exactly one subspace of Π. In this paper, we state that
the set P(V ) of subspace partitions of V is a lattice (Theorem 1), analogous
to the lattice P(n) of set partitions of n. We construct an order-preserving
surjective map from P(V ) onto P(n). Through this map, we are able to
prove that |P(V (n, q))| ≡ |P(n)| modulo q − 1 (Theorem 2). We also show
that the number of subspace partitions of V (n, q) of any type, where there
are more than n subspaces with dimension greater than one, is congruent
to zero modulo q − 1 (Theorem 3). Another important result is that the
Möbius number of P(V (n, q)) is congruent to the Möbius number of P(n)
modulo q−1 (Theorem 4). Finally, we give a characterization of the Möbius
number of P(V (4, q)) (Theorem 5).

2. Subspace partitions of a finite vector space

A subspace partition of V is a collection Π of nonzero subspaces U1, . . . , Uk
such that V =

⋃k
i=1 Ui and Ui ∩ Uj = {0} for i 6= j. Let n1, . . . , nk and

d1, . . . , dk, with d1 < · · · < dk, be positive integers. We say that Π is a
partition of V of type dnkk . . . dn1

1 if it consists of ni subspaces of dimension

di for all i with 1 ≤ i ≤ k; thus necessarily the condition
∑k

i=1 ni(q
di − 1) =
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qn − 1 holds. This condition is not sufficient; e.g., a partition of V (5, 2) of
type 21011 does not exist [6]. Despite extensive research (see [2, 3, 4, 6, 7] and
the references therein) that settled some special cases, the general problem
of finding necessary and sufficient conditions for V to admit a partition of
type dnkk . . . dn1

1 is still open. Subspace partitions have applications in several
areas, including coding theory, design theory, and finite geometry.

We denote the partition of V consisting entirely of one dimensional sub-
spaces by 0 and the one consisting of V only by 1. We also use the shorthand
notation s-D to denote “s-dimensional” from now on.

3. Lattice of subspace partitions

Bu states briefly in [3], “If we define the meet between the two partitions
of V by {Vi} ∩ {Ui} = {Vi ∩ Uj}, it is easy to see that the collection of all
partitions of V form a finite lattice. It should be an aim for further research
to characterize the structure of this lattice.” We have not found any other
references than these two sentences about the lattice structure of subspace
partitions in the literature. Below are the formal definitions of refinement,
meet, and join.

Consider subspace partitions Π and Γ of V , with Π = {U1, . . . , Uk} and
Γ = {W1, . . . ,Wt}. We say Π is a refinement of Γ in P(V ), and write
Π � Γ, if each subspace Wi is the union of a number of the subspaces
Uj . We also say Γ is coarser than Π, and write Γ � Π. Clearly, 0 is the
minimum element and 1 is the maximum element of the poset P(V ). The
meet of two arbitrary partitions Π and Γ, denoted by Π∧Γ, is the partition
{Ui ∩Wj : 1 ≤ i ≤ k, 1 ≤ j ≤ t, Ui ∩Wj 6= {0}} of V . Since P(V (n, q)) is
a poset with a meet operation and a maximum element, we have

Theorem 1. P(V (n, q)) is a lattice.

The join of Π and Γ, denoted by Π ∨ Γ, is defined by Π ∨ Γ =
∧

Ω�Π
Ω�Γ

Ω.

4. Preliminaries

Recall that V = V (n, q). In this section, E denotes a fixed ordered basis
{e1, . . . , en} of V , which we identify with n as needed. We denote the lattice
of subspace partitions of V by P(V ) and the lattice of set partitions of E
(hence, of n) by P(n).

4.1. The good subspace partitions. Let τ be a generic set partition of
E, with τ = {E1, . . . , Et}. Define the injective map ϕ : P(n) → P(V ) by
ϕ(τ) = {〈E1〉, . . . , 〈Et〉, U1, . . . , Us}, where 〈Ei〉 denotes the subspace of V
generated by the set Ei, and U1, . . . , Us are the 1-D subspaces not included
in any 〈Ei〉. Let Π be a partition in P(V ), and define the surjective map
ψ : P(V )→ P(n) by ψ(Π) = {W ∩ E : W ∈ Π, W ∩ E 6= ∅}.
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Lemma 1. For ψ and ϕ defined as above, the following hold:
(i) Both ψ and ϕ are monotone maps.
(ii) ψϕ(τ) = τ .
(iii) ϕψ(Π) � Π.

Lemma 1 shows that the map ϕ is in fact a “Galois function”, the
monotone counterpart of the well-known “Galois connection” (see Ore [8],
Rota [9], and Aigner [1]). This makes the subset ϕ(P(n)) of P(V ) a lattice
isomorphic to P(n). We will denote this subset of P(V ) by A, and call
its members good partitions. Accordingly, the remaining partitions in P(V )
will be called bad. We organize our observations as follows:

Proposition 2. The set A of good partitions of V consists of all Π ∈ P(V )
with the property ϕψ(Π) = Π, and its elements are in 1-1 correspondence
with the set partitions of E. The explicit characterization of A is as follows:

A = {Π ∈ P(V ) : for all W ∈ Π, W = 〈W ∩ E〉 if dim(W ) ≥ 2}.

4.2. Canonical bases. Let 〈−,−〉E denote the inner product on V deter-
mined by the orthonormal basis E. For any v ∈ V , define the support of
v, written supp(v), as the set {ei : 〈v, ei〉E 6= 0}, and define the support of
a subspace W ⊆ V , written supp(W ), as the set

⋃
w∈W supp(w). We will

make use of the canonical bases of subspaces of V . The following fact is
standard.

Proposition 3. If W is a k-D subspace of V (n, q), and E is a fixed ordered
basis (e.g., the standard basis) of V (n, q), then there exists a unique n × n
matrix over GF(q) of rank k in reduced row echelon form, whose nonzero
rows form a basis of W (with respect to E). This basis is called the canonical
basis of W .

We omit the proof of the following simple lemma.

Lemma 4. If W is a nonzero subspace of V , and β is the canonical basis
of W , then the following properties hold:
(i) If w,w′ ∈ β and w 6= w′, then we cannot have supp(w) ⊆ supp(w′).
(ii) If w ∈ W\{0}, with dim(W ) ≥ 2, then supp(w) cannot be a proper
subset of supp(w′) for any w′ ∈ β.
(iii) W ∩ E is a subset of β.
(iv) If U ⊆W and U = 〈U ∩ β〉, then U ∩ β is the canonical basis for U .

Using Lemma 4, we now describe a natural decomposition for nonzero
subspaces W of V . If W has canonical basis β, then we define an equivalence
relation ∼ on elements of β by the following rule: wi ∼ wj if and only if
there exists a chain v0, v1, . . . , vr of elements of β such that v0 = wi, vr = wj ,
and supp(vs−1) ∩ supp(vs) 6= ∅ for all s with 1 ≤ s ≤ r. The equivalence
classes of ∼ partition E ∩ supp(W ).

Lemma 5. If W is a subspace of V of dimension k with k ≥ 2, and β is
the canonical basis of W with respect to a fixed ordered basis E of V , then



4 FUSUN AKMAN AND PAPA A. SISSOKHO

E is the disjoint union of the following three sets (any one of which could
be empty):

E1 = W ∩ E = β ∩ E, E2 =
⋃

w∈β\E1

supp(w), E3 = E\(E1 ∪ E2),

where E1 is the union of equivalence classes of ∼ that are singletons.
Moreover, β can be written uniquely as a disjoint union of E1 and larger

equivalence classes β1, . . . , βt, with
⋃
w∈βj supp(w)

def
= E

(j)
2 , and consequently,

E2 can be written uniquely as a disjoint union of indecomposable subsets

E2 = E
(1)
2 ∪ · · · ∪ E(t)

2 . Therefore, we have the unique decomposition of

W into a direct sum W = 〈E1〉 ⊕W (1) ⊕ · · · ⊕W (t), where each βj is the

canonical basis of W (j), and supp(W (j)) = E
(j)
2 .

4.3. The group of invertible diagonal matrices. Every subgroup of
GL(n, q), the group of automorphisms of V (n, q), acts on P(V ) via the rule
g({W1, . . . ,Wk}) = {g(W1), . . . , g(Wk)}. The type of a partition is invariant
under this action. Let G be the abelian subgroup of GL(n, q) represented by
the invertible diagonal matrices with respect to the fixed basis E. Clearly,
the order of G is (q−1)n, where q−1 is the order of the cyclic group GF(q)∗.
The subgroup Z = {cI : c ∈ GF(q)∗} of G is isomorphic to GF(q)∗, and is
contained in the stabilizer GΠ of any partition Π ∈ P(V ) in G.

4.4. The bad subspace partitions. Recall that

A = {Π ∈ P(V ) : for all W ∈ Π, W = 〈W ∩ E〉 if dim(W ) ≥ 2}.
Define

B = {Π ∈ P(V ) \ A : for all W ∈ Π, 〈W ∩ E〉 6= ∅ if dim(W ) ≥ 2},
and let

C = {Π ∈ P(V ) \ A : there exists W ∈ Π such that

〈W ∩ E〉 = ∅ and dim(W ) ≥ 2}.

These three sets partition the set P(V ).

Lemma 6. If W is a subspace of V of dimension at least two such that
W 6= 〈W∩E〉, then the subgroup of G fixing W consists of elements that have
blocks of equal (otherwise free) entries on the diagonal. Hence, this subgroup
has order (q − 1)m, where m is the number of blocks, and 1 ≤ m ≤ n− 1.

Proof. Suppose that W is as in Lemma 5, and let g be the diagonal matrix
diag(g11, . . . , gnn) ∈ G. If g satisfies the condition

(1) ej and ek are in the same set E
(i)
2 ⇒ gjj = gkk,

then g(W (i)) = W (i) for all i, which is equivalent to g(W ) = W . Conversely,
assume that g(W ) = W . Without loss of generality, let g11 = 1. Fix any

element (say e1) of E
(i)
2 , and let u be an element of βi with e1 ∈ supp(u).
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By Lemma 4(ii), g(u) − u ∈ W (i) must be zero, because it has strictly
smaller support than u. It follows that g(u) = u and gss = 1 for all s with
es ∈ supp(u). That is, the diagonal entries of g corresponding to the support
of a canonical basis element are constant, and since it is possible to go from

any element of E
(i)
2 to any other via linked supports of basis elements, we

obtain Eq. (1). Thus, if there are k equivalence classes in β (including
singletons) and l elements of E3, then there are (q − 1)k+l elements in the
subgroup of G defined by Eq. (1). �

Proposition 7. If Π ∈ B, then the order of the orbit of Π under G is equal
to (q − 1)m, with 1 ≤ m ≤ n− 1. Consequently, (q − 1) divides |B|.

Proof. Note that there may be some subspaces W ′ in Π that are generated
by W ′ ∩ E; these are fixed by any g ∈ G and do not affect the order of the
stabilizer GΠ of Π in G, nor the size of the orbit of Π. However, there must
be at least one W ∈ Π with dim(W ) ≥ 2, W ∩ E 6= ∅, and W 6= 〈W ∩ E〉,
because Π is in B.

Any g ∈ GΠ necessarily fixes such W , as the subspace 〈W ∩E〉 must go to
itself under multiplication by a diagonal matrix. The group GΠ is then the
intersection of all subgroups of G fixing any of the subspaces W described
above. By Lemma 6, we know that each such subgroup consists of elements
with blocks of equal (but otherwise free) elements on the diagonal.

The intersection of the subgroups of G described above may make some
blocks merge, but the structure of the elements of the group GΠ will essen-
tially be the same. Since there is at least one block of length greater than or

equal to two (due to the existence of some E
(i)
2 ; see Lemma 5), and Z ⊆ GΠ

for all Π ∈ P(V ), we have |GΠ| = (q − 1)r, with 1 ≤ r ≤ n − 1. Thus, the
same restrictions on the power of q− 1 hold for the order of the orbit G/GΠ

of Π. As B is a disjoint union of such orbits, q − 1 divides |B|. �

Finally, we turn our attention to the bad partitions in C, namely, in
P(V ) \ (A ∪ B). For each i with 1 ≤ i ≤ n, define C(i) by

C(i) =

Π ∈ C : min

 ⋃
W∈Π

dimW≥2,W∩E=∅

{j : ej ∈ supp(W )}

 = i

 .

Note that C(n−1) = C(n) = ∅ and the sets C(i), 1 ≤ i ≤ n − 2, form a
set partition of C. For all i with 1 ≤ i ≤ n − 2, we also define G(i) to be
{diag(g11, . . . , gnn) ∈ G : gjj = 1 for j 6= i}, which is a subgroup of G of

order q − 1. Observe that C(i) is closed under the action of G(i).

Proposition 8. If Π ∈ C(i), then the order of the orbit of Π under the
action of G(i) is q − 1. Consequently, q − 1 divides |C|.

Proof. Let Π ∈ C(i) and g ∈ G(i). There exists W ∈ Π with dim(W ) ≥ 2
and W ∩ E = ∅, as well as canonical basis vectors u and v ∈ W such that
ei ∈ supp(u) and ei 6∈ supp(v) (Lemma 4). Since the action of G(i) affects
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only the coefficient of ei, we have g(v) = v. Now any g ∈ G(i) that fixes Π
must fix the subspace W .

Let us reconsider the first element u ∈ W . We have u = ei + z for
some z ∈ V \{0} such that ei 6∈ supp(z). Let g be any element of the

stabilizer G
(i)
Π , say g = diag(1, . . . , gii, . . . , 1), necessarily fixing W . Now,

since g(u) − u = (gii − 1)ei ∈ W , and W ∩ E = ∅, we must have gii = 1.
That is, the only element in the stabilizer of Π is the identity matrix, I.

Hence, the order of the orbit of Π is |G(i)|/|G(i)
Π | = (q − 1)/|{I}| = q − 1.

Thus q − 1 divides |C(i)|. As C is a disjoint union of the sets C(i), q − 1 also
divides |C|. �

5. Final count: Theorems 2-5

We retain the notation of Section 4. The Gaussian coefficient
[
n
k

]
q
, de-

fined by (qn−1)(qn−1−1)···(qn−k+1−1)
(qk−1)(qk−1−1)···(q−1)

, counts the number of k-D subspaces of

V (n, q).

Theorem 2. The number of subspace partitions of V (n, q) is congruent to
the number of set partitions of n modulo q − 1.

Proof. By Proposition 2, the subspace partitions in A are in one-to-one
correspondence with the set partitions of E. Moreover, the total size of
P(V ) \ A is divisible by (q − 1) (Propositions 7 and 8). �

Example 9. The number of subspace partitions of V (3, q) is
[

3
2

]
q

+ 2 =

q2 + q + 3 ≡ 5 mod (q − 1), the total number of set partitions of {1, 2, 3}.

Theorem 3. If n1, . . . , nk and d1, . . . , dk are positive integers such that

1 < d1 < · · · < dk and
∑k

i=1 nidi > n, then the number of subspace partitions
of V (n, q) of type dnkk · · · d

n1
1 1n0 (where n0 may be zero) is congruent to zero

modulo q − 1.

Proof. Let Π be a partition of V of type dnkk · · · d
n1
1 1n0 . Note that the type

of a partition and the supports of its subspaces are constant throughout
any orbit under the action of any subgroup of the group G introduced in
Subsection 4.3. By Propositions 2, 7, and 8, it suffices to show that Π 6∈ A.
Assume, on the contrary, that Π ∈ A. It follows that each subspace of
dimension greater than one in Π is generated by a subset of E = {e1, . . . , en};
let E′ ⊆ E be the union of such subsets. Thus, the canonical bases of the
subspaces of dimension greater than one form a partition of E′, and we have

n = |E| ≥ |E′| =
k∑
i=1

nidi > n,

a contradiction. �
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Let P be a finite poset with a minimum element 0 and a maximum el-
ement 1. For x and y ∈ P, with x ≤ y, the Möbius function is defined by
µ(x, x) = 1, and for x < y, by µ(x, y) = −

∑
x≤z<y µ(x, z). We will call the

number µ(0,1) the Möbius number of P (see Godsil [5] for slightly different
terminology). One significance of this number is that the reduced order com-
plex of P(V ), with the vertex set consisting of the elements of P(V )\{0,1}
and the edge set consisting of the nonempty chains in P(V ) \ {0,1}, has
Euler characteristic equal to µ(0,1) (Rota [9]). We have the following result
about the Möbius number of P(V ):

Theorem 4. The Möbius number µn,q(0,1) of the poset P(V ) of subspace
partitions of V (n, q) is congruent to (−1)n−1(n − 1)!, the Möbius number
µn(0, 1) of the poset P(n) of set partitions of n, modulo q − 1.

Proof. Let T be a partition of the integer n, with T = (n−1)mn−1 · · · 2m21m1 ,
let τ vary over all set partitions of n of type T (we write t(τ) = T ), and
let Π vary over all corresponding subspace partitions of V (n, q) of type
[T ] = (n − 1)mn−1 · · · 2m21x (we write t(Π) = [T ]). We want to prove by
induction that

(2)
∑

Π
t(Π)=[T ]

µn,q(0,Π) ≡
∑
τ

t(τ)=T

µn(0, τ) (mod q − 1).

Note that if Π and Π′ are in the same orbit, then µn,q(0,Π) = µn,q(0,Π
′),

because the type of a partition completely determines this number. Hence,
when a subspace partition Π is in B or C, the Möbius function value µn,q(0,Π)
will occur in multiples of q − 1 by Propositions 7 and 8. Therefore, we may
ignore partitions of types described in Theorem 3 above, modulo q−1. This
observation together with Eq. (2) will immediately lead us to the desired
result, since we will have

µn,q(0,1) = −
∑

Π
Π6=1

µn,q(0,Π)(3)

≡ −
∑

[T ] 6=n1

∑
Π

t(Π)=[T ]

µn,q(0,Π) (mod q − 1)

≡ −
∑
T 6=n1

∑
τ

t(τ)=T

µn(0, τ) (mod q − 1) (Eq. (2))

≡ −
∑
τ 6=1

µn(0, τ) ≡ µn(0, 1) (mod q − 1)

for each n. Hence, we only need to prove Eq. (2).
If n = 2, then the only possible nice partition types are T = 12 and

[T ] = 1q+1, and Eq. (2) can only be in the form

µ2,q(0,0) = 1 = µ2(0, 0) ≡ µ2(0, 0) (mod q − 1).
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Next, assume that Eq. (2) holds for all dimensions < n, where n ≥ 3, and
that T and [T ] are as described as above. We have∑

Π
t(Π)=[T ]

µn,q(0,Π) =
∑

Π
t(Π)=[T ]

(µn−1,q(0,1))mn−1 · · · (µ2,q(0,1))m2

≡
∑
τ

t(τ)=T

(µn−1(0, 1))mn−1 · · · (µ2(0, 1))m2 (mod q − 1)

(by induction step and Eq. (3))

≡
∑
τ

t(τ)=T

µn(0, τ) (mod q − 1).

�

The Möbius numbers of P(V (n, q)) for n ≤ 3 are trivial to compute. We
give below a formula for the Möbius number of P(V (4, q)), characterized in
terms of the numbers of certain partial spreads. Let t be a positive integer,
with t ≤ n. A partial t-spread (of size k) of V (n, q) is a subspace partition Π
of V (n, q) of type tk1x, where k = |Π| and x =

(
(qn − 1)− k(qt − 1)

)
/(q−1).

Theorem 5. The Möbius number of P(V (4, q)) is given by

µ4,q(0,1) = −
q2+1∑
k=0

(−1)kc4
k −

[
4

3

]
q

(q2 + q),

where c4
0 = 1, and c4

k is the number of partial 2-spreads of V (4, q) of size k.
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