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A subspace partition of a finite vector space Fn
q of dimension 

n over the field Fq with q elements is a collection Π of 
subspaces of Fn

q consisting of subspaces with mutually zero 
intersection that partition the nonzero vectors in Fn

q . Clearly, 
Π satisfies the equation 

∑
W∈Π(qdimW − 1) = qn − 1, which 

is called the packing condition. We say that Π contains a 
direct sum if there exist W1, . . . , Wr ∈ Π with W1 ⊕ · · · ⊕
Wr = Fn

q . Partitions with direct sums are ubiquitous in 
practice and form an important subfamily of the lattice of 
all subspace partitions of Fn

q , which is a combinatorial q-
analogue of the lattice of all set partitions of the set with 
n elements. In this paper, we show that subspace partitions 
with direct sums (where the number h of distinct dimensions 
among subspaces of Π is arbitrary) exist when their type 
(the multiset of subspace dimensions found in Π) is in the 
convex hull of certain kinds of vertices in the lattice of 
solutions of the packing condition. This generalizes a result in 
a previous paper, where we had considered subspace partitions 
containing at most h = 2 distinct subspace dimensions. 
We also construct an infinite family of Frobenius subspace 
partitions with h distinct dimensions that cannot contain a 
direct sum, due to the fact that no combination of dimensions 
adds up to n.
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1. Introduction

1.1. Subspace partitions and Gaussian partitions of finite vector spaces

For any positive integer n, let n denote a set with n elements, P(n) denote the 
collection of set partitions of n, and P(n) denote the collection of integer parti-
tions of n. The cardinalities of the last two sets, commonly known as the Bell num-
ber and the partition function respectively, will be denoted by B(n) = |P(n)| and 
p(n) = |P(n)|.

For a prime power q, the symbol Fn
q will denote the vector space of dimension n

over the Gaussian field Fq. A subspace partition Π of Fn
q , also known as a vector space 

partition in the literature, is a collection of subspaces of Fn
q such that any two subspaces 

in Π have zero intersection, and every nonzero vector in Fn
q appears in exactly one 

element of Π. We say that a subspace partition Π contains a direct sum if there exist 
r subspaces Wi ∈ Π with W1 ⊕ · · · ⊕ Wr = Fn

q for some r ≥ 1. Two special cases are 
the set of all one-dimensional subspaces of Fn

q and the singleton {Fn
q }, denoted by 0

and 1 respectively. The set P(Fn
q ) of all subspace partitions of Fn

q is known to be a 
lattice with the underlying “refinement” partial order, the minimal object 0, and the 
maximal object 1 [1]. A similar statement applies to P(n). In this paper, we will argue 
in favor of considering the set PD(Fn

q ) of subspace partitions of Fn
q that contain direct 

sums to be a valid q-analogue of P(n), and prove a theorem that gives us necessary 
conditions for a subspace partition be in PD(Fn

q ). The special case of the theorem with 
at most two distinct dimensions among the subspaces of a partition was the subject of 
[4].

If a positive integer a divides n, then it is always possible to construct an a-spread, 
which is a subspace partition of Fn

q consisting entirely of subspaces of dimension a (see 
André [5] and Segre [18]). For an integer a such that 1 < a < n, the term partial a-spread
of Fn

q refers to a collection of a-dimensional subspaces of Fn
q with mutually zero inter-

sections by convention. Now, any finite collection of subspaces that have pairwise zero 
intersections can be completed to a subspace partition by appending all one-dimensional 
subspaces of Fn

q that are not contained in any of these subspaces. Therefore, we can 
also envision a partial a-spread as an element of P(Fn

q ) exhibiting two distinct subspace 
dimensions, a and 1, and we will henceforth use the term in this manner. Further-
more, we will often use the shorthand notation “a-D” instead of “a-dimensional.” In [4], 
we proved that both a-spreads and partial a-spreads contain direct sums uncondition-
ally.

The type of a subspace partition Π, which we call a Gaussian partition of Fn
q , is 

the multiset of dimensions of the subspaces in Π. Thus, if a subspace partition Π con-
tains ui subspaces of dimension ai with 1 ≤ i ≤ h, where the positive integers ai
are assumed to be distinct, then the corresponding Gaussian partition is denoted by 
T (Π) = au1

1 · · · auh

h . The vector u = (u1, . . . , uh) is hence a solution of the packing con-
dition
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(qa1 − 1)u1 + · · · + (qah − 1)uh = qn − 1, (1)

which indicates that all nonzero vectors in Fn
q are allocated to (or, partitioned by) the 

subspaces of Π. We will reserve the symbol PG(Fn
q ) for the set of all Gaussian partitions 

of Fn
q . The set PG(Fn

q ) (resp., P(n)) is a poset, whose partial ordering reflects that 
of P(Fn

q ) (resp., P(n)). The number of Gaussian partitions of Fn
q will be denoted by 

pq(n).
The set of subspace partitions of Fn

q that do not admit direct sums is nonempty for 
any h. Some, but not all, of these subspace partitions have a type T which does not 
contain an integer partition of n as a sub-multiset, hence excluding the possibility of a 
direct sum from the outset (see [4] for examples of both kinds). We will call the latter 
kind of subspace partition a Frobenius partition, after the Frobenius number: given any 
set of relatively prime positive integers a1, . . . , ad, the Frobenius number g(a1, . . . , ad) is 
the largest positive integer that cannot be represented as a linear combination of ai with 
nonnegative integer coefficients.

1.2. The argument for combinatorial q-analogues

One of the analogies between the set n and the vector space Fn
q is provided by the 

Gaussian binomial coefficient[
n

k

]
q

= (1 − qn)(1 − qn−1) · · · (1 − qn−k+1)
(1 − q)(1 − q2) · · · (1 − qk) ,

which is a monic polynomial in Z[q] that counts the number of k-dimensional subspaces 
of Fn

q . After clearing the denominator and substituting q = 1, we obtain the regular 
binomial coefficient (

n

k

)
,

which is the number of k-subsets of n. Therefore, we recognize Fn
q as a combinatorial

object that is a q-analogue of n, just as the collection of subspaces of Fn
q is a combinatorial

q-analogue of the power set of n. Indeed, finite sets have been dubbed “vector spaces 
over the field F1” by Tits [20].

A substantial amount of research has been done on the topic of q-analogues of clas-
sical combinatorial objects and their enumeration. For instance, pioneering work on 
q-analogues of the Stirling numbers of both kinds was done by Gould [13] and Car-
litz [10,11], which were further studied by Gessel [12], Wachs and White [22], Cai and 
Readdy [9], Milne [17], and others. In addition, q-analogues of partially ordered sets were 
studied by Simion [21] in general, while the particular case of the lattice of set partitions 
was investigated by Bennett, Dempsey, and Sagan [6]. Our work is primarily concerned 
with a new q-analogue of the lattice of set partitions of n, which has not been studied in 
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this sense by other authors. The q-Bell numbers based on this combinatorial object are 
also different from those in Milne [17]. Thus, in recent papers (see [1–3]), we followed the 
relationship between n and Fn

q to its natural conclusion. To support the analogies, we 
needed to define explicitly a combinatorial relationship between P(n) and P(Fn

q ). We 
established the following steps [1]:

• Identify n with a fixed basis of Fn
q .

• Consider the action of the diagonal subgroup G of GLq(n) with respect to this basis 
on P(Fn

q ).
• Show that an orbit of P(Fn

q ) under G is one of two types: either (a) it contains only 
one subspace partition Π, whose significant subspaces are spanned by parts of a fixed 
set partition of n, with 1-D subspaces completing Π, or (b) its size is a multiple of 
q − 1.

The inference is that there exists a lattice embedding of P(n) into P(Fn
q ), and that 

Bq(n) ≡ B(n) (mod q − 1). We were also able to show that the Möbius functions of 
the two lattices are related by the congruence μq(0, 1) ≡ μ(0, 1) (mod q − 1). On the 
other hand, lacking a lattice structure or a group action on PG(Fn

q ), we had to restrict 
ourselves to reasonably large and well-understood subfamilies of this set for a similar 
reduction in size to p(n) modulo q − 1 [2,3]. Let us emphasize that even the maximal 
admissible types of partial spreads are still unknown except in a few special cases, and 
hence, counting all Gaussian partitions of Fn

q modulo q − 1 presents an insurmountable 
difficulty at the current level of our knowledge. In short, the statement pq(n) ≡ p(n)
(mod q − 1) remains a conjecture.

We were thus motivated to find a q-extension of P(n) to a natural class of the sub-
space partitions of Fn

q , and consequently, of P(n) to a natural class of the Gaussian 
partitions of Fn

q . Instead of an embedding, we explored the concept of several subspace 
partitions that could be seen as representing a given set partition. This led us to the 
last paper [4] in our program, which we will summarize next. Note that subspace par-
titions of Fn

q containing direct sums not only extend set partitions of various bases of 
Fn
q , but provide generalizations of flags (nested sequences of subspaces with dimension 

increasing by 1) of Fn
q as well, which were studied more narrowly by Milne [16] and 

Bennett et al. [6] in connection with q-analogues of the Stirling numbers of the second 
kind. Most importantly, in [4], we deduced that since singleton G-orbits contain direct 
sums by definition, and every larger orbit has either only subspace partitions containing 
direct sums or no such partition, the first congruence holds for the cardinality of PD(Fn

q )
as well. To summarize, we have so far proven:

Proposition 1 ([1,4]). Let B(n), Bq(n), and BD,q(n) be the cardinalities of P(n), P(Fn
q ), 

and PD(Fn
q ) respectively. Then
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Table 1
q-analogies.

Classical object/symbol q-analogue/symbol
Set n = {1, . . . , n} Vector space Fn

q with bases of n elements each
Subset of n with k elements Subspace of Fn

q of dimension k
Number of k-subsets of n: binomial coefficient 

(n
k

)
Number of k-subspaces of Fn

q : Gaussian binomial 

coefficient 
[
n
k

]
q

Subset lattice (power set) of n Subspace lattice of Fn
q

Set partition of n Subspace partition of Fn
q

Lattice of set partitions of n: P(n) Lattice of subspace partitions of Fn
q : P(Fn

q )
Set partition of n with subsets A1, . . . , Am Subspace partition of Fn

q with a direct sum W1 ⊕
. . . ⊕ Wm = Fn

q , where dim Wi = |Ai|
Number of set partitions of n: Bell number B(n) Number of subspace partitions of Fn

q : q-Bell num-
ber Bq(n)
Number of subspace partitions of Fn

q containing 
direct sums: (D, q)-Bell number BD,q(n)

Möbius number of P(n): μ(0, 1) Möbius number of P(Fn
q ): μq(0, 1)

n q-number of n: [n]q
def= (qn − 1)/(q − 1)

Integer partition of n Gaussian partition of Fn
q

Positive solution of a1x1+· · ·+ahxh = n: element 
of S1 (Section 1.4)

Positive solution of [a1]qu1 + · · ·+ [ah]quh = [n]q: 
element of Sq (Section 1.4)

Number of integer partitions of n: partition func-
tion p(n)

Number of Gaussian partitions of Fn
q : pq(n) (We 

conjecture: pq(n) ≡ p(n) (mod q − 1).)

Bq(n) ≡ BD,q(n) ≡ B(n) (mod q − 1).

Moreover, if μ and μq denote the Möbius functions of the lattices P(n) and P(Fn
q )

respectively, then we have

μq(0,1) ≡ μ(0, 1) (mod q − 1).

Table 1 displays a summary of the combinatorial objects and their q-analogues of 
interest in this paper. The reader may refer to it for convenience.

1.3. Families of subspace partitions that contain direct sums

Since we will be generalizing the results in [4] in great detail, we shall only provide a 
brief version of them in this introductory section. The main concept is that for subspace 
partitions Π ∈ P(Fn

q ) of type aubv, where the Diophantine equation ax + by = n has 
nonnegative solutions (i.e., there exist integer partitions of n of the form axby with 
nonnegative parts, so that it is conceivable that we might have a direct sum), we can be 
sure that Π contains a direct sum as long as v (equivalently, u) is contained in a union 
of two intervals, whose endpoints are given by polynomials in Z[q].

Theorem 1. [4] Let q be a prime power, n, a, b be integers such that n > a > b > 0, 
and Π be a subspace partition of Fn

q of type aubv. Define S to be the set of all solutions 
(x, y) of the Diophantine equation ax + by = n with x, y ≥ 0. Let y0 = min(x,y)∈S1 y, 
yM = max(x,y)∈S1 y, x0 = (n − ay0)/b, xM = (n − ayM )/b, and consider the intervals
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I1 =
[
qby0 − 1
qb − 1 ,

qbyM − 1
qb − 1

]
and I2 =

[
qn − qax0

qb − 1 ,
qn − qaxM

qb − 1

]
.

If S �= ∅ and v ∈ I1∪I2, then Π contains a direct sum. Conversely, if Π contains a direct 
sum, then S �= ∅.

When either a or b divides n, one of the two intervals is contained in the other. 
Otherwise, they are disjoint, with I1 to the left of I2. Now, Theorem 1 does not explicitly 
say that subspace partitions of the given types are the only ones with direct sums. 
However, there are many indications that the lower and upper limits of the intervals are 
important in their own right [4]. First, the lower limit for v, namely (qby0 − 1)/(qb − 1), 
seems to be strict for all known subspace partitions of Fn

q of type aubv as far as we 
can tell. Second, we were able to construct a Frobenius partition that contains no direct 
sums, due to the fact that its Gaussian partition contains no integer partition of n (i.e., 
we have S = ∅). Third, the upper bound is also significant, as we found an infinite class C
of examples of subspace partitions of type aubv for which the solution set S is nonempty; 
however, v is strictly larger than max(I1 ∪ I2) for each partition in C, and no partition 
in C contains a direct sum.

The reader may consult [4] for the details of our claims in this section. Since sub-
space partitions with exactly one or two distinct subspace dimensions have been studied 
extensively, one might gain some insights from the proofs and examples therein.

1.4. Main theorem: generalization to any number of distinct subspace dimensions in a 
partition

Let h denote the number of distinct subspace dimensions a1, . . . , ah that appear in 
a subspace partition of Fn

q , S1 denote the set of positive solutions of the Diophantine 
equation (see Remark 16 for an extension to nonnegative solutions)

a1x1 + · · · + ahxh = n, (2)

and Sq denote the set of positive solutions of the corresponding packing condition (1). 
Furthermore, we will use the notation [r]q for the Gaussian coefficient (qr − 1)/(q − 1)
(see Section 3.1).

In order to state and prove the main theorem, we will introduce some underlying 
features that we were able to take for granted for h = 2. We shall devote the rest of this 
article to expanding upon the following concepts, then proving the main theorem, and fi-
nally, providing an infinite family of subspace partitions of Frobenius type for arbitrary h.

(i) The solutions of a homogeneous linear Diophantine equation in h ≥ 2 variables 
form a Euclidean lattice L′ of dimension h − 1. As a result, the solutions of a 
nonhomogeneous linear Diophantine equation in at least two variables, if any, form 
an affine Euclidean lattice, L, which is a translation of the lattice L′ of solutions 
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of the associated homogeneous equation. It is understood that if h = 1, then |L| =
|L′| = 1.

(ii) The following vector is in L′, the lattice of solutions of the homogeneous Diophantine 
equation associated to Eq. (2):

v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a2/d2
a1/d2

0
...
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)

where d2 = gcd(a1, a2) (see Section 2.1). This solution is the trivial extension for 
the case h = 2. Note that it is possible to permute the terms of Eq. (2), rename 
the coefficients, and utilize other similar vectors. This will give us the flexibility 
to potentially find more Gaussian partitions that belong to subspace partitions 
containing direct sums. Moreover, we will show that we can complete {v} to a basis 
of L′, where each vector has a negative first component, followed by nonnegative 
components.

(iii) The solution set S1 of Eq. (2), if nonempty, can always be embedded into the solution 
set Sq via one of h! different coordinate maps fq. Without loss of generality, we may 
assume that the image of any solution x = (x1, . . . , xh) ∈ S1 is

X = (X1, . . . , Xh) = fq(x) =
(
qa2x2+···+ahxh [x1]qa1 , . . . , qahxh [xh−1]qah−1 , [xh]qah

)
,

(4)
where [x]q is the Gaussian binomial coefficient (qx−1)/(q−1) (see Section 3.1). The 
complete set of coordinate maps is obtained by permuting the terms in Equation (2). 
For example, for h = 2, we have two intervals for the variable v in Theorem 1, 
associated with the 2! maps

f (1)
q (x, y) =

(
qby[x]qa , [y]qb

)
and f (2)

q (x, y) =
(
[x]qa , qax[y]qb

)
, (5)

corresponding to the permuted equations ax + by = n and by+ax = n respectively.

With this notation, we can now introduce Lemma 2 (a synthesis of Lemmas 19 and 21 
that we proved in [4]), which forms the foundation of Theorem 1. It is in fact this result, 
rather than the condensed Theorem 1, that we are generalizing as Theorem 2 in this 
paper; in a one-dimensional lattice, it is very easy to describe unions of intervals, as we 
were able to do in Theorem 1. A description of the union of an unknown number of 
convex regions in higher dimensions would be inelegant and unnecessary in comparison.
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Fig. 1. Regions of solution lattice where direct sums are guaranteed. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Lemma 2 ([4]). Let a and b be distinct positive integers, and Π be a subspace partition 
of Fn

q with u subspaces of dimension a and v subspaces of dimension b so that (u, v) is a 
solution of the packing condition [a]qu + [b]qv = [n]q. Suppose that (u, v) lies on the line 
joining the special solutions fq(xj , yj) and fq(xj+1, yj+1), where fq = f

(1)
q (resp., fq =

f
(2)
q ) in Eq. (5), and (xj , yj), (xj+1, yj+1) are two “consecutive” solutions of ax +by = n

with xj > xj+1 (resp., yj > yj+1). Then Π contains a direct sum with xj subspaces of 
dimension a and yj subspaces of dimension b.

Example 4 below provides explicit constructions of some direct sums predicted by 
Lemma 2 in two subspace partitions of the same type. How Lemma 2 fits into the larger 
picture of Theorem 1 is explained in Example 7 and further illustrated in Fig. 1.

Note that there exists v = (v1, v2) such that (xj , yj) + v = (xj+1, yj+1) and v1 < 0, 
v2 > 0 in the Lemma when fq = f

(1)
q : it is the well-known vector v = (−b/d, a/d) from 

the theory of linear Diophantine equations in two variables, where d = gcd(a, b) (the 
signs are swapped for fq = f

(2)
q ). Our main theorem is thus a natural generalization of 

Lemma 2:

Theorem 2. Let a1, . . . , ah, n be fixed, distinct, positive integers, with h ≥ 1, and Π
be a subspace partition of Fn

q of type au1
1 · · · auh

h , so that U = (u1, . . . , uh) ∈ Sq, and 
let L′ be the lattice of solutions of the homogeneous equation a1x1 + · · · + ahxh = 0. 
Suppose that U is in the convex hull of {X, Y(1), . . . , Y(�)} ⊂ Sq, where X = fq(x)
and Y(i) = fq

(
y(i)) = fq

(
x + v(i)) for some x, y(i) ∈ S1, with � (� ≤ h − 1) linearly 

independent vectors v(i) ∈ L′ satisfying v(i)
1 < 0 and v(i)

j ≥ 0 for 1 ≤ i ≤ � and 
2 ≤ j ≤ h. Then Π contains a direct sum consisting of xk direct summands of dimension 
ak for 1 ≤ k ≤ h.
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Remark 3.

(i) The theorem easily expands to include nonnegative solutions x, y(i) in many cases. 
See Remark 16 after the proof.

(ii) There are in general many sets of � linearly independent vectors v(i) (� ≤ h − 1) as 
described in the hypothesis; see the vector v shown in Eq. (3) and Proposition 5. 
Note that for each i, 1 ≤ i ≤ �, it follows from the hypothesis that at least one entry 
v
(i)
j of v(i) needs to be strictly positive.

(iii) Strictly speaking, the choice of the coordinate map fq given in Eq. (4) among all 
others is correlated with the choice of ordering of the aj. If a permutation σ of the 
terms of Eq. (2) is employed instead, then we can replace aj by aσ(j), xj by xσ(j), 
uj by uσ(j), and v(i)

j by v(i)
σ(j) for all j, 1 ≤ j ≤ h. For example, the formula f (2)

q (x, y)
for solutions (x, y) of ax + by = n in Eq. (5) is essentially the same as the formula 
f

(1)
q (y, x) for solutions (y, x) of by+ax = n; the two are related by the transposition 
σ = (12).

(iv) Although we know that q must be a prime power, the arithmetic part of the proof 
does not depend on this fact, nor on the particular method of construction of the 
subspace partition. However, see Example 4 for other types of direct sums not 
predicted by this Theorem.

We should also point out that while Theorem 2 is a universal statement that applies 
to any prime power q ≥ 2, it does not exhaust all possibilities for the existence of a direct 
sum. The existence of a direct sum may depend on the particular subspace partition, 
not just the type, and the multisets of dimensions of direct sums in a subspace partition 
may not be unique. For example, in Section 1.2, we mentioned very special subspace 
partitions that contain direct sums: those with some subspaces spanned by the parts of 
a set partition of a given basis of Fn

q , together with the remaining 1-D subspaces.

Example 4. Consider the integer partition 23 of n = 6 and a basis B = {w1, . . . , w6} of 
F6
q . Let 〈I〉 denote the subspace of F6

q spanned by a subset I of B. Then the subspace 
partition Π1 of F6

q consisting of the 2-subspaces

〈w1,w2〉, 〈w3,w4〉, 〈w5,w6〉

and the remaining 1-D subspaces contains a direct sum of dimensions 2 +2 +2. However, 
the subspace partition Π2 (of the same type as Π1) consisting of the 2-subspaces

〈w1,w2〉, 〈w3,w4〉, 〈w1 + w3,w2 + w4〉

together with the remaining 1-D subspaces cannot contain a direct sum of dimensions 
2 +2 +2, because the ordinary sum of the only three subspaces of dimension two does not 
contain w5 or w6. This does not clash with our assertion that we can always predict some 
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direct sums of certain dimensions regardless of construction. In this case, the Gaussian 
partition T = T (Π1) = T (Π2) = 231q5+q4+q3+(q−3)q+(q−2) falls between

f (2)
q (1, 4) =

(
1, q5 + q4 + q3 + q2) and f (2)

q (2, 2) =
(
q2 + 1, q5 + q4) ,

where (1, 4) and (2, 2) are consecutive solutions of the integer partition equation 2x +y =
6 with 4 > 2 (see Eq. (5) and Lemma 2). If we considered only the type T , then we would 
expect a direct sum of dimensions 2 + 1 + 1 + 1 + 1 by Lemma 2, which does exist in 
both Π1 and Π2: for example, we have

〈w1,w2〉 ⊕ 〈w1 + w3〉 ⊕ 〈w2 + w4〉 ⊕ 〈w4 + w5〉 ⊕ 〈w4 + w6〉 = F6
q

in Π1 and

〈w1,w2〉 ⊕ 〈w5〉 ⊕ 〈w6〉 ⊕ 〈w3 + w5〉 ⊕ 〈w4 + w6〉 = F6
q

in Π2.

2. The lattice of solutions of a diophantine equation

2.1. The Bond solutions

It is well known that if a Diophantine equation in h ≥ 2 variables has solutions, then 
these solutions form an affine Euclidean lattice L of rank h −1. There are many algorithms 
that describe the general solution of a Diophantine equation (2), where h, n, a1, . . . , ah ∈
Z, h ≥ 2, and the ai are distinct and nonzero. The following formula is due to J. Bond [8]: 
Let di = gcd(a1, . . . , ai), with d1 = a1, and x(j)

i be non-unique Bézout coefficients such 
that

a1x
(i)
1 + · · · + aix

(i)
i = di

for 1 ≤ i ≤ h (then x(1)
1 = 1). For Eq. (2) to have solutions, we must have n = dhth for 

some th ∈ Z. The Bond solutions are of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
...

xh−2
xh−1
xh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
(h)
1 th

x
(h)
2 th

x
(h)
3 th
...

x
(h)
h−2th

x
(h)
h−1th

x
(h)

th

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ih−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x
(h−1)
1

ah

dh

−x
(h−1)
2

ah

dh

−x
(h−1)
3

ah

dh

...
−x

(h−1)
h−2

ah

dh

−x
(h−1)
h−1

ah

dh
dh−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ih−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x
(h−2)
1

ah−1
dh−1

−x
(h−2)
2

ah−1
dh−1

−x
(h−2)
3

ah−1
dh−1

...
−x

(h−2)
h−2

ah−1
dh−1

dh−2
dh−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)
h dh
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+ · · · + i2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x
(2)
1

a3
d3

−x
(2)
2

a3
d3

d2
d3
...
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ i1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a2
d2
d1
d2

0
...
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where i1, . . . , ih−1 are arbitrary integers (we have changed the signs of all vectors but 
the first one and absorbed the sign in the coefficients ij so that the notation fits our 
conventions). We may write this in symbols as

x = x0 + ih−1v(h−1) + ih−2v(h−2) + · · · + i2v(2) + i1v(1),

where x0 is a particular solution of the nonhomogeneous equation, and {v(1), . . . , v(h−1)}
is a “primitive basis” of the solution lattice L′ of the associated homogeneous equation. 
This is similar to the real solution set of a single linear equation in h real variables. Note 
that the last vector, v(1), is the vector v we mention in Eq. (3), where d1 = a1.

2.2. A special basis of the solution lattice

Let us show that it is always possible to find a basis for the associated homogeneous 
lattice consisting of vectors with a negative component in the first position and nonneg-
ative components in the remaining positions.

Proposition 5. Let a1x1 + · · ·+ahxh = 0 be a Diophantine equation with distinct positive 
integer coefficients ai, where h ≥ 2. Then there exists a basis of the solution lattice L′

consisting of h − 1 vectors such that the first component is negative and the remaining 
components are nonnegative in each case.

Proof. We shall send the basis {v(i) : 1 ≤ i ≤ h − 1} given by the Bond solutions 
(6) to another by a matrix that is invertible over Z. Note that v(1) has a negative 
first component and a positive second component, followed by zeros. Subsequently, all 
other v(i) have arbitrary integers in the first i components, a positive integer in the 
(i + 1)st component, and zeros elsewhere. We leave v(1) as is, and add it sufficiently 
many times -if necessary- to v(2) so that the first component becomes negative and the 
second becomes positive by the Archimedean property. This process does not change the 
positive third component and the zeros below. Hence, there exists a nonnegative integer 
N1 such that N1 v(1) +v(2) ∈ L′ has the desired properties. Next, we add this new vector 
sufficiently many times to v(3), if necessary, to obtain a negative first component and 
positive second and third components, and keep the positive fourth component as well 
as the zeros underneath intact. The newly constructed vector in L′ is thus of the form 
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N2(N1 v(1) +v(2)) +v(3) for some N1, N2 ≥ 0, etc. The transformation is represented by 
the (h − 1) × (h − 1) matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 N1 N1N2 · · · N1N2 · · ·Nh−2
0 1 N2 · · · N2N3 · · ·Nh−2
0 0 1 · · · N3N4 · · ·Nh−2
...

...
...

. . .
...

0 0 0 · · · Nh−2
0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(in the given ordered basis), which is invertible over Z. �
3. The geometry of the coordinate maps

3.1. Some properties of the q-numbers

For a nonnegative integer a, the Gaussian binomial coefficient

[a]q =
[
a

1

]
q

= qa − 1
q − 1 = qa−1 + · · · + q + 1,

sometimes called a q-number, is the number of 1-D subspaces of Fa
q . As q → 1, we have 

[a]q → a. Although it is more common to encounter quotients such as (qa− 1)/(q− 1) in 
the literature, the ease of working with q-numbers cannot be overstated. First, we note 
that the packing condition (1) can be written in the more compact form

[a1]q u1 + · · · + [ah]q uh = [n]q (7)

after dividing both sides by q − 1, and letting q → 1 gives us back the integer partition 
equation shown in (2):

a1x1 + · · · + ahxh = n

(the variables having been changed from ui to xi for consistency of notation). Next, we 
showed in [4] that the identities

[xy]q
[y]q

= [x]qy ⇐⇒ [xy]q = [x]qy [y]q = [x]q[y]qx (8)

can be used to obtain the special solutions fq of the packing condition in Eq. (7). More-
over, since

gcd
(
qa − 1, qb − 1

)
= qgcd(a,b) − 1 and gcd ([a]q, [b]q) = [gcd(a, b)]q ∈ Z[q],
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Bézout identities of the form [a]qu(q) + [b]qv(q) = [gcd(a, b)]q are reduced to Bézout 
identities for a and b as q → 1. All principles we have discussed here can be extended 
to three or more q-numbers. Many generic results about Gaussian partitions are tradi-
tionally expressed in terms of polynomials in q thanks to the availability of solutions of 
Eq. (7), such as the Bond solutions (6) that make use of Bézout coefficients, in Z[q]h.

3.2. The coordinate maps from S1 into Sq

Let us consider the following foundational statement from the paper [4], with the 
order of variables reversed:

Proposition 6. Let a1, . . . , ah, n be distinct positive integers, with h ≥ 2, and gcd(a1, . . . ,
ah) dividing n. If x = (x1, . . . , xh) is a nonnegative solution of the Diophantine equation

a1x1 + · · · + ahxh = n,

then

X = (X1, . . . , Xh) = fq(x) = (qa2x2+···+ahxh [x1]qa1 , . . . , qahxh [xh−1]qah−1 , [xh]qah )

is a solution of the packing condition

[a1]qu1 + · · · + [ah]quh = [n]q

for all integers q ≥ 2, where the entries Xi = Xi(q) ∈ Z[q] are polynomials with non-
negative values for q ≥ 1. In particular, Xi(1) = xi for all i, and the packing condition 
is reduced to the first Diophantine equation as q → 1. When a1 < · · · < ah, the solution 
X is a known Gaussian partition, corresponding to a constructible subspace partition of 
Fn
q that we called “basic” in [4].

Proof. Given the equation

a1x1 + · · · + ah−1xh−1 + ahxh = n,

it is straightforward to prove that

[n]q = [ah xh]q + qah xh [ah−1 xh−1]q + · · · + qa2x2+···+ahxh [a1x1]q

is a true identity. We work on the right-hand side and use Eq. (8) several times:

[n]q = [ah]q [xh]qah + [ah−1]q qah xh [xh−1]qah−1 + · · · + [a1]q qa2x2+···+ahxh [x1]qa1

= [ah]q Xh(q) + [ah−1]q Xh−1(q) + · · · + [a1]q X1(q). �
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Example 7 (h = 2). An example of a Diophantine equation with two variables where there 
are no zero coordinates among the solutions, and hence, there are two distinct intervals 
I1 and I2 as described in Theorem 1, is 2x +3y = 17. Fig. 1 shows a not-to-scale drawing 
of the lines 2x +3y = 17 (q = 1), [2]2u +[3]2v = [17]2, and [2]3u +[3]3v = [17]3, together 
with the extensions of the positive integer solutions

(x, y) = (1, 5), (4, 3), (7, 1)

of the first equation to the 2! = 2 sets of solutions (among many) on the lines corre-
sponding to q = 2 and q = 3 via the coordinate maps f (1)

q and f (2)
q (see Eq. (5)).

There are two sets of corresponding solutions of the packing condition for each of 
q = 2 and q = 3, depending on how we order the variables. The first set (closer to the 
x- or u-axis) correspond to

f (1)
q (x, y) = (X,Y ) = (q3y[x]q2 , [y]q3),

and we have three (basic) Gaussian partitions

f (1)
q (1, 5) = (q15, q12 + q9 + q6 + q3 + 1)

f (1)
q (4, 3) = (q15 + q13 + q11 + q9, q6 + q3 + 1)

f (1)
q (7, 1) = (q15 + q13 + q11 + q9 + q7 + q5 + q3, 1).

In the notation of Lemma 2, the interval I1 is the region on the v-axis between v = 1
and v = q12 + q9 + q6 + q3 + 1 (see Fig. 1, where both intervals are indicated for q = 2). 
The second set (closer to the y- or v-axis) is

f (2)
q (x, y) = (X,Y ) = ([x]q2 , q2x[y]q3),

with

f (2)
q (1, 5) = (1, q14 + q11 + q8 + q5 + q2),

f (2)
q (4, 3) = (q6 + q4 + q2 + 1, q14 + q11 + q8),

f (2)
q (7, 1) = (q12 + q10 + q8 + q6 + q4 + q2 + 1, q14).

The interval I2 of Lemma 2 is then the line segment between v = q14 and v = q14 +q11 +
q8+q5+q2 on the v-axis. In general, the theory of subspace partitions does not guarantee 
that the last three solutions above are actual Gaussian partitions. In particular, since 
for any subspace partition Π the number of subspaces of smallest dimension is at least 
q + 1 (e.g., see [15, Theorem 1]), it follows that f (2)(1, 5) is not a Gaussian partition 
(but the remaining two are). The intervals I1 and I2 on the v-axis for q = 2 are those 
for which any subspace partition of F17

2 of type 2u3v, where v ∈ I1 ∪ I2, must contain a 
direct sum. In fact, we can tell what the dimensions of the subspaces of the direct sum 
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(that is, the one we predict in Theorem 1) should be, depending on where v falls in I1
or I2. For example, if (u, v) is on the line between f (1)

2 (4, 3) and f (1)
2 (1, 5) (the red and 

blue dots in Fig. 1 respectively) for a subspace partition Π of F17
2 of type 2u3v, where 

xj = 4 > 1 = xj+1, then Π has a direct sum with four subspaces of dimension 2 and 
three subspaces of dimension 3 (see Lemma 2).

In the next few sections, we will show that the coordinate maps fq not only extend 
nonnegative integer solutions of ax + by = n to nonnegative integer solutions of [a]qu +
[b]qv = [n]q (where the positive integer q is not necessarily a prime power), but also map 
the part of the line ax + by = n that lies in the first quadrant homeomorphically to the 
parts of all lines [a]qu + [b]qv = [n]q, where [a]q, [b]q, [n]q are defined continuously, that 
lie in the first quadrant. In fact, this result will be proven more generally for hyperplanes 
defined by linear equations in h variables.

3.3. Continuous q-numbers

Expanding the familiar formula

[x]q = qx − 1
q − 1

for x ∈ {0, 1, 2, . . . } and a prime power q, one can define

[x]q = qx − 1
q − 1

for q, x ∈ R and q ≥ 1, because the limit

lim
q→1

qx − 1
q − 1 = lim

q→1

xqx−1

1 = x

exists.

Definition 8. Let x, q ∈ R, with x ∈ R and q ≥ 1. The continuous q-number (of x) is 
defined to be

[x]q =
{

qx−1
q−1 if q > 1, and
x if q = 1.

Lemma 9. For x, q ∈ R and q ≥ 1, the continuous q-number [x]q is a continuous function 
of x and q.

Lemma 10. For real numbers r, s, q, where q ≥ 1, we have

[rs]q = [r]qs [s]q = [r]q[s]qr .
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3.4. Coordinate maps as homeomorphisms between H1 ∩K and Hq ∩K

Let Hq be the hyperplane in Rh defined by the packing condition (7), where substitut-
ing q = 1 gives us the hyperplane H1 in Rh defined by Eq. (2). Moreover, let K denote the 
positive orthant of Rh. Regarding our notation introduced just before Theorem 2, note 
that if L1 and Lq denote the solution lattices of Equations (2) and (7) respectively, then 
the positive solutions of interest are S1 = L1 ∩K ⊂ H1 ∩K and Sq = Lq ∩K ⊂ Hq ∩K.

Corollary 11 (Generalization of Proposition 6). Let a1, . . . , ah, n be distinct positive real 
numbers, with h ≥ 2. If x = (x1, . . . , xh) is a real solution of the equation

a1x1 + · · · + ahxh = n,

then

X = (X1, . . . , Xh) = fq(x) = (qa2x2+···+ahxh [x1]qa1 , . . . , qahxh [xh−1]qah−1 , [xh]qah )

is a solution of

[a1]qu1 + · · · + [ah]quh = [n]q

for all real numbers q ≥ 1.

Proof. Imitate the proof of Proposition 6 using Definition 8 and Lemma 10. �
Definition 12. The continuous functions fq : H1 → Hq defined in Corollary 11 for fixed 
q ≥ 1 will be called coordinate maps. There are h! of them, corresponding to the permu-
tations of the terms of the Diophantine equation a1x1 + · · · + ahxh = n.

Proposition 13. Let fq be any one of the h! transformations that send integer solutions 
of a1x1 + · · ·+ahxh = n in H1∩K to integer solutions of [a1]qu1 + · · ·+[ah]quh = [n]q in 
Hq ∩K for some integer q ≥ 2. Then the continuous coordinate map fq of Definition 8
is a homeomorphism between H1 ∩K and Hq ∩K as a real function of the xi and for a 
fixed real value of q > 1. All fq are reduced to the identity map as q → 1, which justifies 
the notation H1 and S1.

Proof. We can invert each coordinate map fq that sends the hyperplane H1 to a hy-
perplane Hq, where q > 1 is real, using induction on i, with i descending from h to 1. 
Let

fq(x1, . . . , xh) = (u1, . . . , uh) =
(
qa2x2+···+ahxh [x1]qa1 , · · · , qahxh [xh−1]qah−1 , [xh]qah

)
for some q > 1. Then
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Fig. 2. Continuous deformation of hyperplanes.

uh = qahxh − 1
qah − 1 ⇒ xh =

logq [uh (qah − 1) + 1]
ah

.

Assume that (xk+1, . . . , xh) has been solved for some k ≥ h − 1. We solve for xk:

uk = qak+1xk+1+···+ahxh
qakxk − 1
qak − 1

⇒ xk =
logq

[
uk (qak − 1) q−(ak+1xk+1+···+ahxh) + 1

]
ak

.

This shows that f−1
q exists on the range of fq. Also, given (u1, . . . , uh) ≥ (0, . . . , 0), 

we can see that (x1, . . . , xh) defined as above dominates the zero vector. Indeed, since 
q > 1, the ai are positive integers, and all uh ≥ 0, we may conclude that each xk is 
nonnegative. �

Once again, in the not-to-scale Fig. 2, we see how a coordinate map fq continuously 
deforms the line ax + by = n (at q = 1) into all lines [a]qu + [b]qv = [n]q for real q > 1
(in the first quadrant) and the points on the line ax + by = n into points on all lines 
[a]qu + [b]qv = [n]q for real q > 1, though not along straight lines. A similar result is 
achieved for higher-dimensional hyperplanes. Although fq is clearly not linear in x for 
fixed q, we can prove the following by showing that the derivative of [x]q is positive:

Lemma 14. The continuous function [x]q is strictly increasing for x > 0 and fixed q > 1.

Corollary 15. Let x and y be points of real nonnegative components on the hyperplane H1
given by a1x1 + · · · + ahxh = n, with ai, h, n as before, and h ≥ 2. Assume that x1 > y1
and xj ≤ yj for 2 ≤ j ≤ h. Then the order relationships of xj and yj are preserved for 
the nonnegative components Xj = Xj(x) and Yj = Yj(y) of X = fq(x) and Y = fq(y)
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in Hq for all j, 1 ≤ j ≤ h. In particular, if we define V = Y − X, then V1 < 0, V2 > 0, 
and Vj ≥ 0 for 3 ≤ j ≤ h, if any.

Proof. Induction: the statement is true for j = h by Lemma 14. Assume that we have 
proven the statement for k + 1 ≤ j ≤ h for some k ≥ 2. Let us prove it for j = k: we 
have

Vk = Yk(y) −Xk(x) = qah yh+···+ak+1 yk+1 [yk]qak − qah xh+···+ak+1 xk+1 [xk]qak ≥ 0

since

q > 1, ah yh + · · · + ak+1 yk+1 ≥ ah xh + · · · + ak+1 xk+1, and [yk]qak ≥ [xk]qak

by Lemma 14. Finally, since all entries except the first one in fq(x) are less than or equal 
to their counterparts in fq(y), the first entries must be reversed in order, so that the real 
h-tuples fq(x) and fq(y) still satisfy the -continuous- packing condition (7). In fact, as 
at least one pair (xj , yj) must satisfy xj < yj with 2 ≤ j ≤ h, we must have

[y2]qa2 > [x2]qa2 or ah yh + · · · + a3 y3 > ah xh + · · · + a3 x3,

so that the second and first inequalities are strict: V2 > 0, and hence, V1 < 0. The last 
statement is true as both X and Y are solutions of Eq. (7). �
4. Proof of Theorem 2

Since we proved Theorem 2 for h = 1, 2 in [4], we may assume that h ≥ 3. Let us now 
finish the proof of the theorem.

Proof. Assume that U = (u1, . . . , uh) is in the convex hull of

X = (X1, . . . , Xh) = fq(x) =
(
qa2x2+···+ahxh [x1]qa1 , . . . , qahxh [xh−1]qah−1 , [xh]qah

)
together with � additional solutions (with 1 ≤ � ≤ h − 1) Y(i) = fq

(
y(i)) = fq

(
x + v(i))

of the packing condition for linearly independent vectors v(i) as described in the hypoth-
esis. Then all vectors V(i) = Y(i) − X satisfy the properties in Corollary 15: for each i
with 1 ≤ i ≤ �, we have V (i)

1 < 0, V (i)
2 > 0, and V (i)

j ≥ 0 for 3 ≤ j ≤ h. Let

U = λ0 X + λ1Y(1) + · · · + λ�Y(�) (1 ≤ � ≤ h− 1)

for unique λi ∈ R such that

0 ≤ λi ≤ 1 and
�∑

λi = 1.

i=0
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Thus, since Y(i) = X + V(i) for 1 ≤ i ≤ �, we must have

U = X + λ1V(1) + · · · + λ�V(�),

where 0 ≤
∑�

i=1 λi ≤ 1. Note that this condition does not exclude the case U = X. Also, 
for later use, let (μ) be the superscript of a vector V (i) for which the first component, 
V

(μ)
1 , is minimum among all first components. Then it must be true that

u1 = X1 +
�∑

i=1
λiV

(i)
1 ≥ X1 +

(
�∑

i=1
λi

)
V

(μ)
1 ≥ X1 + V

(μ)
1 = Y

(μ)
1 (9)

(because 
∑�

i=1 λi ≤ 1 and V (μ)
1 < 0).

We shall now start building the direct sum from the bottom up. Suppose that

Ŵ (ah) = W
(ah)
1 ⊕ · · · ⊕W

(ah)
t

is a maximal direct sum that consists of t ah-D subspaces of Π out of all uh of them. 
As uh ≥ 1, we know that t ≥ 1. Each of the remaining uh − t subspaces must have an 
intersection of at least dimension 1 with this direct sum by maximality. That is, there 
exist at least uh− t available 1-D subspaces in Ŵ (ah), which houses [aht]q of them in all, 
but the t[ah] subspaces that are already in W (ah)

1 , . . . , W (ah)
t cannot be used, because 

mutual intersections of the subspaces of Π are the zero subspace by definition. We write 
this condition counting the available 1-D subspaces for anticipated intersections with the 
direct sum as

[aht]q − t[ah]q ≥ uh − t

⇒ [aht]q + t ≥ uh + t[ah]q ≥ uh + t

⇒ [aht]q ≥ uh ≥ Xh = [xh]qah ≥ 0

⇒ qaht−1 + · · · + q + 1 ≥ qah(xh−1) + · · · + qah + 1

⇒ aht− 1 ≥ ah(xh − 1)

⇒ aht > aht− 1 ≥ ah(xh − 1)

⇒ t > xh − 1

⇒ t ≥ xh.

Without loss of generality, choose the first xh direct summands, and complete this trun-
cated direct sum to a maximal subspace by using direct summands from among the 
ah−1-D subspaces of Π, etc.

By induction, assume that we already have a direct sum

[W (ah)
1 ⊕ · · · ⊕W (ah)

x ] ⊕ · · · ⊕ [W (ak)
1 ⊕ · · · ⊕W (ak)

x ]

h k
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made up of direct summands from Π, where 3 ≤ k ≤ h, and the superscripts indicate 
the dimensions of the subspaces. Let us add as many direct summands as possible from 
Π of dimension ak−1 and obtain a direct sum

[W (ah)
1 ⊕ · · · ⊕W (ah)

xh
] ⊕ · · · ⊕ [W (ak)

1 ⊕ · · · ⊕W (ak)
xk

] ⊕ [W (ak−1)
1 ⊕ · · · ⊕W

(ak−1)
t ],

where t ≥ 0. Again, by counting the available 1-D subspaces, we must similarly have

[ahxh + · · · + akxk + ak−1t]q − xh[ah]q − · · · − xk[ak]q − t[ak−1]q ≥ uk−1 − t

⇒ [ahxh + · · · + akxk + ak−1t]q + t ≥ uk−1 + xh[ah]q + · · · + xk[ak]q + t[ak−1]q

= Xk−1 +
�∑

i=1
λiV

(i)
k−1 + xh[ah]q + · · · + xk[ak]q + t[ak−1]q.

Since V (i)
k−1 ≥ 0 for i ∈ {1, . . . , �}, xj [aj ]q ≥ 0 for j ∈ {1, . . . , h}, and t[ak−1]q ≥ t (by 

Corollary 15 and the hypothesis), the above inequality becomes

[ahxh + · · · + akxk + ak−1t]q + t ≥ Xk−1 + t

⇒ [ahxh + · · · + akxk + ak−1t]q ≥ qakxk+···+ahxh [xk−1]qak−1

⇒ q(ahxh+···+akxk+ak−1t)−1+ · · · +1 ≥ qahxh+···+akxk+ak−1(xk−1−1)+ · · · +qahxh+···+akxk

⇒ ahxh + · · · + akxk + ak−1t− 1 ≥ ahxh + · · · + akxk + ak−1(xk−1 − 1)

⇒ ak−1t− 1 ≥ ak−1(xk−1 − 1)

⇒ ak−1t > ak−1t− 1 ≥ ak−1(xk−1 − 1)

⇒ t > xk−1 − 1

⇒ t ≥ xk−1.

This way, we have shown the existence of a direct sum

[W (ah)
1 ⊕ · · · ⊕W (ah)

xh
] ⊕ · · · ⊕ [W (a2)

1 ⊕ · · · ⊕W (a2)
x2

] (10)

built from subspaces of Π of dimensions ah, . . . , a2 respectively by induction.
One may wonder why we did not push the induction up to k = 1. However, the lower 

bound condition V (i)
j ≥ 0, where 1 ≤ i ≤ �, that we have used for 2 ≤ j ≤ h does not 

hold for j = 1, since V (i)
1 < 0. Thus, we use a more careful analysis to show that the 

above direct sum can be further extended with x1 subspaces of dimension a1 as required.
We now complete the direct sum in (10) to a maximal one using a1-D subspaces of Π,

[W (ah)
1 ⊕ · · · ⊕W (ah)

xh
] ⊕ · · · ⊕ [W (a2)

1 ⊕ · · · ⊕W (a2)
x2

] ⊕ [W (a1)
1 ⊕ · · · ⊕W (a1)

s ],

where 0 ≤ s ≤ x1, because 
∑

aixi = n. The final calculation is as follows:
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[ahxh + · · · + a2x2 + a1s]q − xh[ah]q − · · · − x2[a2]q − s[a1]q ≥ u1 − s

⇒ [ahxh + · · · + a2x2 + a1s]q + s ≥ u1 + xh[ah]q + · · · + x2[a2]q + s[a1]q
⇒ [ahxh + · · · + a2x2 + a1s]q + s ≥ u1 + s (since xj [aj ]q ≥ 0 and [a1]q ≥ 1)

⇒ [ahxh + · · · + a2x2 + a1s]q ≥ u1 ≥ Y
(μ)
1 (by Eq. (9))

⇒ [ahxh + · · · + a2x2 + a1s]q ≥ qahyh+···+a2y2 [y1]qa1 (set y(μ) = y for simplicity)

= qahyh+···+a2y2
(
(qa1)(y1−1) + · · · + qa1 + 1

)
≥ qahyh+···+a2y2+a1y1−a1

⇒ qahxh+···+a2x2+a1s − 1
q − 1 ≥ qahyh+···+a2y2+a1y1−a1 (definition of q-number)

⇒ qahxh+···+a2x2+a1s ≥ (q − 1) qahyh+···+a2y2+a1y1−a1 + 1 ≥ qahyh+···+a2y2+a1y1−a1 + 1

⇒ ahxh + · · · + a2x2 + a1s > ahyh + · · · + a2y2 + a1y1 − a1

⇒ n− a1x1 + a1s > n− a1 (since
∑n

i=1 aixi =
∑n

i=1 aiyi = n)

⇒ −a1x1 + a1s > −a1

⇒ −x1 + s > −1

⇒ s > x1 − 1

⇒ s ≥ x1. �
Remark 16. We proved Theorem 1 for nonnegative rather than positive solutions x, y(i)

of ax + by = n. That proof was simplified by the fact that all solutions were linearly 
ordered at regular intervals. For the current theorem, it is again possible to choose x to 
be nonnegative without adding any new hypotheses: if any xi happens to be zero, then 
we simply skip that part of the construction and add no subspaces of dimension ai to 
the direct sum. This way, the expressions [xi]qai will be expanded as a nonzero sum of 
powers of q only when xi > 0. As for the y(i), our new proof above translates verbatim 
to the nonnegative case provided that y(μ)

1 , the first component of the solution y(μ), is 
positive: we need to ascertain that 

[
y
(μ)
1

]
qa1

�= 0 at only one point in the proof.

5. Universal solutions of the packing condition

In this section only, let S1 and Sq denote the nonnegative (not just positive) solutions 
of Equations (2) and (7) respectively. General statements about Gaussian partitions of 
Fn
q in the literature are almost always described in terms of polynomial expressions in 

Z[q], even if q is intended to be a fixed prime power.
Our choice of the special solutions fq(x) ∈ Sq of the packing condition introduced 

in Proposition 6 as polynomials in Z[q] is therefore traditional but not at all random. 
These polynomial solutions are among the most generic ones in a certain sense that we 
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will describe below, which makes the statement of Theorem 2 more meaningful in the 
context of all prime powers q.

Definition 17. For the formal variable q, we define a set

U [q] = {g(q) = akq
k + · · · a1q

1 + a0 ∈ Z[q] : k ≥ 0, ai ∈ {0, 1} for 0 ≤ i ≤ k}.

We shall call the elements of U [q] universal polynomials in Z[q], and any polynomial 
solution

U(q) = (g1(q), . . . , gh(q)) ∈ (U [q])h

of the packing condition (7) will be called a universal solution.

Remark 18. The importance of universal solutions is that each of them represents a non-
negative solution of the packing condition for all prime powers (indeed, for all integers) 
q0 ≥ 2, since we can think of it as a set of integer components written in base q0: the 
coefficients 0 and 1 of a universal polynomial are acceptable digits for any base. In partic-
ular, these polynomial solutions do not give us repeated powers of q (hence, coefficients 
≥ 2) when substituted into the packing condition, as the right-hand side of the equation 
is also a universal polynomial, [n]q.

Let us also emphasize the connection of universal polynomials to our q-analogy theme:

Proposition 19. Let a1, . . . , ah, n be fixed distinct positive integers. The coefficients [ai]q
and the constant term [n]q of the packing condition (7) are universal polynomials, and 
the h! special solutions fq(x) of this equation defined in Proposition 6 for each x ∈ S1
are universal solutions. Moreover,

• The substitution q = 1 into Eq. (7) with solution fq(x) restores the integer identity 
a1x1 + · · · + ahxh = n, where x = (x1, . . . , xh).

• More generally, for any universal solution U(q) = (g1(q), . . . , gh(q)) of Eq. (7), the 
substitution q = 1 into U(q) and [ai]q gives rise to an identity a1x1 + · · ·+ahxh = n

in Z, where x = U(1) = (x1, . . . , xh) ∈ S1.

Here is a complete characterization of all universal solutions of the packing condition, 
which clearly play a special role among all polynomial solutions:

Proposition 20. Let a1, . . . , ah, n be fixed distinct positive integers, with a nonempty solu-
tion set S1 of Eq. (2). Every solution x = (x1, . . . , xh) ∈ S1 and every permutation (with 
repetition) σ(x) of the coefficient multiset that has xi copies of ai, where 1 ≤ i ≤ h, cor-
responds to a unique universal solution of the packing condition (7). This correspondence 
exhausts all universal solutions of (7); hence, the number of such solutions is given by
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∑
x∈S1

(x1 + · · · + xh)!
x1! · · ·xh! .

The h! special solutions fq in Proposition 6 correspond to those x and σ(x) where all 
copies of ai are permuted as a block by σ(x) for all i, 1 ≤ i ≤ h; equivalently, to all 
permutations σ of the coefficients ai with multiplicity one, independent of x.

Proof. By Definition 17 and Proposition 19, any universal solution

U(q) = (g1(q), . . . , gh(q))

of the -polynomial- Eq. (7) must have components of the form

gi(q) =
xi∑
j=1

qcj (1 ≤ i ≤ h),

where (i) x = (x1, . . . , xh) ∈ S1, and (ii) either xi = 0 and the empty sum gi(q) is zero, 
or, xi > 0 and all the xi exponents cj , with cj > 0, are distinct. Any power qcj in gi(q)
multiplied by

[ai]q = qai−1 + qai−2 + · · · + q + 1

produces a block-sum of ai consecutive powers of q, with exponents increasing from cj to 
ai − 1 + cj in increments of 1. Each such block can occur exactly once in [n]q; also, their 
sum over all coefficients [ai]q and all terms of gi(q) must account for the n distinct powers 
of q in [n]q. Therefore, we should be able to arrange the products qcj [ai]q (hence, the xi

copies of [ai]q for each i) end-to-end in some permutation of the multiset {ax1
1 , . . . , axh

h }
and add them in such a way that the expanded products give us qn−1+ · · ·+q+1, in this 
order. The distinct powers qcj in every gi(q) (times [ai]q) must then appear in strictly 
descending order from left to right in this arrangement. Thus, we have shown that every 
universal solution yields a solution x ∈ S1 and a permutation σ(x) of {ax1

1 , . . . , axh

h }.
Conversely, given x ∈ S1 and a multiset permutation σ(x), we can construct xi

distinct powers of q (if xi > 0) for each i, which collectively add up to gi(q), in the 
following manner. Let ak be the rightmost coefficient and al the next one to its left in 
the permutation, where it is possible that k = l. We multiply [ak]q by 1 = q0 and [al]q
by qak to obtain the two rightmost block-sums:

qak [al]q + q0[ak]q =
(
qak+al−1 + qak+al−2 + · · · + qak

)
+ (qak−1 + qak−2 + · · · + q + 1) .

Then the coefficient of the next block must be qak+al , and so on. That is, each time we 
add a new block [at]q, we multiply it by q to an exponent that is the sum of all as’s that 
are to the right of at, with multiplicities. Combining the powers of q in front of all xi

copies of [ai]q, we obtain the ith component gi(q) of the corresponding universal solution 
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U(q). Note that whichever [at]q is the leftmost object in this permutation, the exponent 
of q for [at]q must be the sum of all the remaining as’s (with multiplicities according to 
x), and the last power in the expanded sum will be

q
∑h

i=1 xiai−atqat−1 = q
∑h

i=1 xiai−1 = qn−1,

as expected.
This is the same construction described in the proof of Proposition 6, where all xi

copies of the ai’s had been lumped together. �
Example 21. Consider the Diophantine equation

6x + 5y = 28,

with unique nonnegative solution (3, 2). The corresponding packing condition

[6]qu + [5]qv = [28]q

has exactly one universal solution for every permutation (with repetitions) of the se-
quence 6, 6, 6, 5, 5 and no others (note that 6 is repeated 3 times and 5 is repeated 
twice, which is dictated by the solution). The number of permutations in this example 
is 5!/(3! 2!) = 10. Two of these universal solutions are the fq’s that we already have 
identified; they correspond to the permutations 6, 6, 6, 5, 5 and 5, 5, 6, 6, 6. As another 
example, let us consider the arrangement 6, 5, 6, 5, 6. We construct

1 · (q5 + q4 + q3 + q2 + q + 1) (multiply next by q6)

⇒ (add this) q6 · (q4 + q3 + q2 + q + 1) (next: q11)

⇒ (add this) q11 · (q5 + q4 + q3 + q2 + q + 1) (next: q17)

⇒ (add this) q17 · (q4 + q3 + q2 + q + 1) (next: q22)

⇒ (add this) q22 · (q5 + q4 + q3 + q2 + q + 1).

The corresponding universal solution is

(u, v) =
(
q22 + q11 + 1, q17 + q6) .

In this manner, we obtain all 10 universal solutions (u(q), v(q)) of [6]q u + [5]q v = [28]q, 
and display the matching solutions for q = 2. The arrangements in boldface in Table 2
point to the two solutions that correspond to the two ordinary permutations of 5 and 6, 
which we have called fq.

We indicated in Remark 18 that not all q = 2 solutions of the packing condition can 
be obtained via universal solutions. Although each such numerical solution (u, v) can be 
converted to a pair of universal polynomials (u(q), v(q)) simply by writing u and v in 
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Table 2
Universal solutions of [6]q u + [5]q v = [28]q.

Arrangement u(q) v(q) u(2) v(2)
55666 q12 + q6 + 1 q23 + q18 4 161 8 650 752
56566 q17 + q6 + 1 q23 + q12 131 137 8 392 704
56656 q17 + q11 + 1 q23 + q6 133 121 8 388 672
56665 q17 + q11 + q5 q23 + 1 133 152 8 388 609
65566 q22 + q6 + 1 q17 + q12 4 194 369 135168
65656 q22 + q11 + 1 q17 + q6 4 196 353 131 136
65665 q22 + q11 + q5 q17 + 1 4 196 384 131 073
66556 q22 + q16 + 1 q11 + q6 4 259 841 2 112
66565 q22 + q16 + q5 q11 + 1 4 259 872 2 049
66655 q22 + q16 + q10 q5 + 1 4 260 864 33

Table 3
Number of universal solutions 
of [2]qu + [3]qv = [17]q.

(1, 5) 6!/(1! 5!) = 6
(4, 3) 7!/(4! 3!) = 35
(7, 1) 8!/(7! 1!) = 8
Total 49

base 2 and changing all 2’s to q’s, upon substitution, we obtain a polynomial with some 
coefficients greater than 1 on the left-hand side in many cases, which does not match the 
universal polynomial [n]q on the right-hand side.

Example 22. Let us further examine Example 7, where we had the Diophantine equation

2x + 3y = 17,

with three positive solutions (1, 5), (4, 3), and (7, 1). The number of universal solutions 
of the polynomial packing condition is broken down by solutions x ∈ S1 in Table 3.

We display some of these solutions for the packing condition [2]q u + [3]q v = [17]q in 
Table 4.

Note that only the universal solution constructions that correspond to the two ordi-
nary permutations of the dimensions, 2 and 3, can be defined in a way that is independent 
of x, and be used in Theorem 2. In general, the number of universal solutions per x ∈ S1
varies, and there is no common description of all solution types across the board that 
would be useful as a coordinate map.

6. Subspace partitions with no direct sums: Frobenius subspace partitions

In order to construct an infinite family of Frobenius subspace partitions for arbitrary 
h, we need to introduce several results from other papers. We start with the following 
proposition by Selmer [19] which gives a lower bound for the Frobenius number of certain 
sequences of integers.
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Table 4
Universal solutions of [2]qu + [3]qv = [17]q.

(x, y) Arrangement u(q) v(q) u(2) v(2)
(1, 5) 333332 1 q14+q11+q8+q5+q2 1 18724
(1, 5) 333323 q3 q14+q11+q8+q5+1 8 18721
(1, 5) 333233 q6 q14+q11+q8+q3+1 64 18697
(1, 5) 332333 q9 q14+q11+q6+q3+1 512 18505
(1, 5) 323333 q12 q14+q9+q6+q3+1 4096 16969
(1, 5) 233333 q15 q12+q9+q6+q3+1 32768 4681
(4, 3) 3332222 q6+q4+q2+1 q14+q11+q8 85 18688
(4, 3) 3323222 q9+q4+q2+1 q14+q11+q6 533 18496
(4, 3) 3322322 q9+q7+q2+1 q14+q11+q4 645 18448
· · · · · · · · · · · · · · · · · ·
(4, 3) 2222333 q15+q13+q11+q9 q6+q3+1 43520 73
(7, 1) 32222222 q12+q10+q8+q6+q4+q2+1 q14 5461 16384
(7, 1) 23222222 q15+q10+q8+q6+q4+q2+1 q12 34133 4096
(7, 1) 22322222 q15+q13+q8+q6+q4+q2+1 q10 41301 1024
(7, 1) 22232222 q15+q13+q11+q6+q4+q2+1 q8 43093 256
(7, 1) 22223222 q15+q13+q11+q9+q4+q2+1 q6 43541 64
(7, 1) 22222322 q15+q13+q11+q9+q7+q2+1 q4 43653 16
(7, 1) 22222232 q15+q13+q11+q9+q7+q5+1 q2 43681 4
(7, 1) 22222223 q15+q13+q11+q9+q7+q5+q3 1 43688 1

Proposition 23 (Selmer [19]). If a, d, h, k are positive integers such that h ≥ 2 and 
gcd(a, d) = 1, then

g (a, ka + d, ..., ka + (h− 1)d) = ka

⌊
a− 2
h− 1

⌋
+ (k − 1)a + d(a− 1).

In particular, if k = d = 1, then

g(a, a + 1, ..., a + h− 1) = a

⌊
a− 2
h− 1

⌋
+ a− 1.

We will need the following straightforward corollary.

Corollary 24 (Selmer [19]). If a and h are integers such that h ≥ 2 and a 
⌊
a−2
h−1

⌋
+a −1 ≥

4a + 2h − 1, then

g(a, a + 1, ..., a + h− 1) ≥ 4a + 2h− 1.

We will also use the following result of Heden [14].

Proposition 25 (Heden [14, Theorem 1]). If T = {a1, . . . , ah} is a set of positive integers 
such that 2 ≤ a1 < . . . < ah, then there exists a subspace partition Π of F2ah

q such that 
{dimW : W ∈ Π} = T .

Finally, we state the following results of Beutelspacher [7].
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Lemma 26 (Beutelspacher [7, Example 1 and Lemma 2]).
(i) For any positive integers d and s, there exists a subspace partition Π of Fd+s

q such 
that {dimW : W ∈ Π} = {d, s}.
(ii) For any positive integers s and a such that s ≥ 2a + 1, there exists a subspace 
partition Π of Fs

q such that {dimW : W ∈ Π} = {a, a + 1}.

We now state the main proposition of this section, which shows the existence of 
Frobenius subspace partitions.

Proposition 27. For any integer h with h ≥ 2, let a be an integer such that a 
⌊
a−2
h−1

⌋
+a −

1 ≥ 4a + 2h − 1. If n = g(a, a + 1, . . . , a + h − 1), then there exists a subspace partition 
Π of Fn

q such that {dimW : W ∈ Π} = {a, a +1, . . . , a +h − 1}, and Π does not contain 
a direct sum.

Proof. Let ai = a + i − 1 for 1 ≤ i ≤ h. It follows from Corollary 24 that

n = g(a1, . . . , ah) ≥ 4a + 2h− 1 = 2ah + a1 + a2.

Let d = 2ah and s = n − d, so that s ≥ a1 + a2. Then it follows from Lemma 26(i) that 
there exists a subspace partition Γ of Fn

q such that {dimW : W ∈ Γ} = {d, s}. Let X
be a subspace in Γ. If dimX = d = 2ah, then apply Proposition 25 to obtain a subspace 
partition ΠX of X ∼= F2ah

q such that {dimW : W ∈ ΓX} = {a1, . . . , ah}. If dimX = s, 
where s ≥ a1 + a2 and a2 = a1 + 1, then apply Lemma 26(ii) to obtain a subspace 
partition ΓX of X ∼= Fs

q such that {dimW : W ∈ ΓX} = {a1, a2}. Thus, Π =
⋃

X∈Γ ΓX

is a subspace partition of Fn
q such that {dimW : W ∈ Π} = {a1, . . . , ah}. Finally, we 

claim that Π does not contain a direct sum. Otherwise, there exists W1, . . . , Wt ∈ Π such 
that W1 ⊕ . . .⊕Wt = Fn

q . Thus, dimW1 + . . .+dimWt = n. Since dimWi ∈ {a1, . . . , ah}, 
there exist nonnegative integers xi, 1 ≤ i ≤ h, such that x1a1 + . . .+xhah = n. However, 
this contradicts the definition of the Frobenius number n = g(a1, . . . , ah). �
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