THE COMPLETE CHARACTERIZATION OF THE MINIMUM SIZE SUPERTAIL IN A SUBSPACE PARTITION

ESMERALDA L. NĂSTASE
MATHEMATICS DEPARTMENT
XAVIER UNIVERSITY
CINCINNATI, OHIO 45207, USA
PAPA A. SISSOKHO
MATHEMATICS DEPARTMENT
ILLINOIS STATE UNIVERSITY
NORMAL, ILLINOIS 61790, USA

Abstract

Let q be a prime power and let n be a positive integer. Let $V=V(n, q)$ denote the vector space of dimension n over \mathbb{F}_{q}. A subspace partition \mathcal{P} of V is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in \mathcal{P}. Suppose that d_{1}, \ldots, d_{k} are the different dimensions, in increasing order, that occur in the subspace partition \mathcal{P}. For any integer s, with $2 \leq s \leq k$, the d_{s}-supertail \mathcal{S} of \mathcal{P} is the collection of all subspaces $X \in \mathcal{P}$ such that $\operatorname{dim} X<d_{s}$. It was shown that $|\mathcal{S}| \geq \sigma_{q}\left(d_{s}, d_{s-1}\right)$, where $\sigma_{q}\left(d_{s}, d_{s-1}\right)$ denotes the minimum number of subspaces over all subspace partitions of $V\left(d_{s}, q\right)$ in which the largest subspace has dimension d_{s-1}. Moreover, it was shown that if $d_{s} \geq 2 d_{s-1}$ and equality holds in the previous bound on $|\mathcal{S}|$, then the union of the subspaces in \mathcal{S} forms a subspace. This characterization was also conjectured to hold if $d_{s}<2 d_{s-1}$. This conjecture was recently proved in certain cases. In this paper, we use a much simpler approach to completely settle this conjecture.

1. Introduction

Let q be a prime power and let n be a positive integer. Let $V=V(n, q)$ denote the vector space of dimension n over \mathbb{F}_{q}. A subspace of dimension t is referred to as a t-subspace. A subspace partition, or vector space partition, \mathcal{P} of V, is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in \mathcal{P}. A well-known example of a subspace partition is a spread, which is a subspace partition in which all subspaces have the same dimension. Pioneering work on spreads has been done by several researchers, e.g., André [1] and Segre [14]. Research work on subspace partitions has also been carried since the early 1900's, e.g., see Heden [7] for a survey. A special feature of subspace partitions is that they naturally occur in various fields such as finite geometry, coding theory, and design theory, e.g., see $[1,2,9,10,14]$ and the references therein.

One main line of research in the area of subspace partitions is the Classification Problem, which we shall define after introducing some notation. Given a subspace partition \mathcal{P}, of V, the type of \mathcal{P} is the multiset that consists of $\operatorname{dim} X$ for all subspaces $X \in \mathcal{P}$. The Classification Problem consists

[^0]of finding necessary and/or sufficient conditions for a given multiset of integers that is realizable as the type of a subspace partition of V. Although there are many results related to the Classification Problem, e.g., see $[3,4,5, ?, 11]$, the main question is still wide open.

Before we describe the main contribution of this paper (Theorem 5), we introduce two necessary conditions and a few more definitions. Let \mathcal{P} be a subspace partition of $V(n, q)$ that contains $m_{d_{i}}$ subspaces of dimension d_{i} for $1 \leq i \leq k$. In other words, the type of \mathcal{P} is the multiset that consists of $m_{d_{i}}$ copies of d_{i} for $1 \leq i \leq k$. We denote such a multiset by $d_{1}^{m_{d_{1}}} \ldots d_{k}^{m_{d_{k}}}$. The following necessary conditions are trivial to derive:

$$
\begin{gather*}
\sum_{i=1}^{k} m_{d_{i}}\left(q^{d_{i}}-1\right)=q^{n}-1 \tag{1}\\
\begin{cases}n \geq d_{i}+d_{j} & \text { if } m_{d_{i}}+m_{d_{j}} \geq 2 \text { and } i \neq j ; \\
n \geq 2 d_{i} & \text { if } m_{d_{i}} \geq 2 .\end{cases} \tag{2}
\end{gather*}
$$

Let k, d_{i}, and $m_{d_{i}}$ be as defined, and let s be an integer such that $2 \leq s \leq k$. We define the d_{s}-supertail of \mathcal{P} to be the set of all subspaces $X \in \mathcal{P}$ such that $\operatorname{dim} X<d_{s}$. For any integers d and t such that $1 \leq t \leq d$, we also define $\sigma_{q}(d, t)$ to be the minimum number of subspaces over all subspace partitions of $V(d, q)$ in which the largest subspace has dimension t. It is easy to see that if $t \mid d$, then $\sigma_{q}(d, t)=\left(q^{d}-1\right) /\left(q^{t}-1\right)$, which is the number of subspaces in a t-spread of $V(d, q)$, i.e., a spread whose subspaces have dimension t. In fact, the exact value of $\sigma_{q}(d, t)$ is given by the following theorem (see André [1] and Beutelspacher [2] for $d(\bmod t) \equiv 0$, and see [?, 12] for $d(\bmod t) \not \equiv 0)$.

Theorem 1. Let d, k, t, and r be integers such that $0 \leq r<t, k \geq 1$, and $d=k t+r$. Then

$$
\sigma_{q}(d, t)=\left\{\begin{array}{l}
\left(q^{k t}-1\right) /\left(q^{t}-1\right) \text { for } r=0 \\
q^{t}+1 \text { for } r \geq 1 \text { and } 3 \leq d<2 t \\
\left(q^{d}-q^{t+r}\right) /\left(q^{t}-1\right)+q^{\left.\frac{[++r}{2}\right\rceil}+1 \text { for } r \geq 1 \text { and } d \geq 2 t
\end{array}\right.
$$

Remark 2. If $d=2$, then either $(k, t, r)=(1,2,0)$, or $(k, t, r)=(2,1,0)$. Thus, this $d=2$ possibility in Theorem 1 is implicitly covered by the " $r=0$ " case.

The following theorem generalizes a theorem of Heden [6, Theorem 1], although Heden's theorem is stronger and more detailed for the particular case $s=1$ for which it holds.

Theorem 3 ([8]). Let \mathcal{P} be a subspace partition of $V(n, q)$ of type $d_{1}^{m_{d_{1}}} \ldots d_{k}^{m_{d_{k}}}$ and let $2 \leq s \leq k$. If \mathcal{S} is a d_{s}-supertail of \mathcal{P}, then

$$
\begin{equation*}
|\mathcal{S}| \geq \sigma_{q}\left(d_{s}, d_{s-1}\right) \tag{3}
\end{equation*}
$$

If equality holds in (3), then \mathcal{S} is called a minimum size supertail, and Theorem 3 has the following interesting corollary.

Corollary 4 ([8]). If $|\mathcal{S}|=\sigma_{q}\left(d_{s}, d_{s-1}\right)$ and $d_{s} \geq 2 d_{s-1}$, then the union of the subspaces in \mathcal{S} forms a subspace.

Note that the union of the subspaces in a d_{s}-supertail does not have to be a subspace in general.

For $s=2$, i.e., when \mathcal{S} consists of subspaces of dimension d_{1} only, Heden [6, Theorem 3] proved that the conclusion of Corollary 4 also holds when $d_{s}<2 d_{s-1}$. That result was recently extended in [13] for the following three additional cases:
(i) $s-1 \leq 2$, that is \mathcal{S} contains subspaces of at most 2 different dimensions;
(ii) $d_{s}=2 d_{s-1}-1$; or
(iii) the subspaces in $\mathcal{P} \backslash \mathcal{S}$ have the same dimension.

In this paper, we completely settle the case when $d_{s}<2 d_{s-1}$, and give a complete characterization of the structure of a minimum size supertail. Our main theorem is as follows.
Theorem 5. Let \mathcal{P} be a subspace partition of $V(n, q)$ of type $d_{1}^{m_{d_{1}}} \ldots d_{k}^{m_{d_{k}}}$. Let $2 \leq s \leq k, d=d_{s}$, and $t=d_{s-1}$, and suppose \mathcal{S} is a d-supertail of \mathcal{P} such that $|\mathcal{S}|=\sigma_{q}(d, t)=q^{t}+1$ and $d<2 t$. Then, the set of points of $V(n, q)$ covered by the subspaces in the supertail \mathcal{S} forms a subspace W. Moreover, \mathcal{S} is a subspace partition of W whose type is either $t^{q^{t}+1}$, or $t^{1} a^{q^{t}}$, for some integer $a \geq 1$.

By combining Corollary 4 and Theorem 5, we thus have the following theorem. This proves the conjecture stated in [8].
Theorem 6. Let \mathcal{P} be a subspace partition of $V(n, q)$ of type $d_{1}^{m_{d_{1}}} \ldots d_{k}^{m_{d_{k}}}$. If \mathcal{S} is a d_{s}-supertail of \mathcal{P} of size $|\mathcal{S}|=\sigma_{q}\left(d_{s}, d_{s-1}\right)$, then the set of points of $V(n, q)$ covered by the subspaces in \mathcal{S} forms a subspace.

2. Proof of the main theorem

We now give some notation which is used in the rest of the paper.
Notation 7. (1) Let \mathcal{P} denote a subspace partition of $V(n, q)$ of type $d_{1}^{m_{d_{1}}} \ldots d_{k}^{m_{d_{k}}}$, and let \mathcal{S} denote a d_{s}-supertail of \mathcal{P} of minimum size $|\mathcal{S}|=\sigma_{q}\left(d_{s}, d_{s-1}\right)$.
(2) Set $t=d_{s-1}$ and $d=d_{s}$ with $t<d<2 t$. Thus, $|\mathcal{S}|=\sigma_{q}(d, t)=q^{t}+1$.
(3) For any integer $i \geq 0$, let $\Theta_{i}=\left(q^{i}-1\right) /(q-1)$. Thus, if $i \geq 1$, then Θ_{i} is the the number of points, i.e., 1-subspaces, in an i-subspace.
(4) Let \mathcal{H} denote the set of all hyperplanes of $V(n, q)$.
(5) For $H \in \mathcal{H}$, and any integer $i \geq 1$, let $b_{H, i}$ denote the number of i-subspaces $X \in \mathcal{S}$ such that $X \subseteq H$.
(6) For $H \in \mathcal{H}$, let $\beta_{H}=\sum_{i=a}^{t} b_{H, i} q^{i}$, where $a \leq \operatorname{dim} X \leq t$ for any $X \in \mathcal{S}$.

We will use the following elementary result that needs no further reference.
Proposition 8. The number of hyperplanes $H \in \mathcal{H}$ that contain a given k-subspace of $V(n, q)$ is Θ_{n-k}. In particular, \mathcal{H} contains Θ_{n} hyperplanes.

We will also need the following lemma from [13, Lemma 16].
Lemma 9. Let $\mathcal{P}, \mathcal{S}, t$, and d be as defined in Notation 7. If $H \in \mathcal{H}$, then

$$
\beta_{H} \geq q^{t} \quad \text { and } \quad \sum_{i=1}^{t} m_{i} \Theta_{i}=\frac{c q^{d}-1}{q-1}
$$

for some integer $c \geq 1$.
Remark 10. The bound $\beta_{H} \geq q^{t}$ in Lemma 9 plays an important role in the proof of our main theorem. The proof of this bound relies on results proved in [8] by Heden, Lehmann, and the authors of this paper.

We will use the following easy proposition in the proof of Theorem 5. However, for the sake of completeness, we include a proof of it.

Proposition 11. Let a and t be positive integers such that $t \geq a$. If \mathcal{S} is a subspace partition of $V(t+a, q)$ that contains $q^{t}+1$ subspaces, of which one is a subspace X of dimension t, then all subspaces in $\mathcal{S} \backslash\{X\}$ have dimension a.

Proof. For any $Y \in \mathcal{S} \backslash\{X\}$, the dimension condition (2) implies that $\operatorname{dim} Y \leq a$. Thus, the proposition follows from the packing condition (1) and the following identity

$$
q^{t+a}-1=\left(q^{t}-1\right)+\sum_{i=1}^{q^{t}}\left(q^{a}-1\right)
$$

Finally, we now prove the following technical lemma.
Lemma 12. Let \mathcal{P}, \mathcal{S}, and t, be as defined in Notation 7. Let $W=\bigcup_{X \in \mathcal{S}} X$ and let $\delta=\delta(\mathcal{S})$ denote the number of points, i.e., 1-subspaces, of W. For $H \in \mathcal{H}$, let $\delta_{H}=\delta_{H}(\mathcal{S})$ be the number of points in $W \cap H$. Then
(i) $|\mathcal{S}|-1=q^{t} \leq \beta_{H} \leq c q^{d}+q^{t}=\delta(q-1)+|\mathcal{S}|$
(ii) $\sum_{H} \delta_{H}=\delta \Theta_{n-1}$
(iii) $\sum_{H} \delta_{H}\left(\delta_{H}-1\right)=\delta(\delta-1) \Theta_{n-2}$.
(iv) $\beta_{H}=q \delta_{H}-\delta+|\mathcal{S}|$.
(v) $\sum_{H} \beta_{H}=|\mathcal{S}| \Theta_{n}-\delta$.
(vi) $\sum_{H} \beta_{H}^{2}=\Theta_{n}\left(|\mathcal{S}|^{2}+\delta(q-1)\right)-\delta^{2}(q-1)-\delta(2|\mathcal{S}|-1)$.
(vii) $\sum_{H}\left(\beta_{H}-(|\mathcal{S}|-1)\right)\left(\beta_{H}-(\delta(q-1)+|\mathcal{S}|)\right)=0$.

Proof. Applying Lemma 9 and using $|\mathcal{S}|=q^{t}+1$, gives

$$
\beta_{H} \geq q^{t}=|\mathcal{S}|-1
$$

Using the definitions of δ and Θ_{i}, we obtain

$$
\beta_{H}=\sum_{i=a}^{t} b_{H, i} q^{i} \leq \sum_{i=1}^{t} m_{i} q^{i}=\delta(q-1)+|\mathcal{S}|,
$$

which concludes the proof of (i).
To prove (ii), we count in two ways the number N_{1} of pairs (u, H) such that u is a point in both \mathcal{S} and the hyperplane $H \in \mathcal{H}$, i.e., $u \in W \cap H$. We first determine N_{1} by selecting u from $W \cap H$, and then summing over all $H \in \mathcal{H}$, to obtain $N_{1}=\sum_{H} \delta_{H}$. Second, we determine N_{1} by selecting u from $W=\bigcup_{X \in \mathcal{S}} X$ in δ ways, and multiplying it by the number Θ_{n-1} of $H \in \mathcal{H}$ that contain u. This yields $N_{1}=\delta \Theta_{n-1}$, and the proof of (ii) is complete.

To prove (iii), we count in two ways the number N_{2} of triples $\left(u_{1}, u_{2}, H\right)$ such that u_{1} and u_{2} are distinct points that are contained in both W and the hyperplane $H \in \mathcal{H}$. First, we determine N_{2} by fixing $H \in \mathcal{H}$ and by selecting from $W \cap H$ an ordered pair of distinct points $\left(u_{1}, u_{2}\right)$. Since the number of points in H is denoted by δ_{H}, we can sum over all $H \in \mathcal{H}$ to obtain $N_{2}=\sum_{H} \delta_{H}\left(\delta_{H}-1\right)$. Second, we determine N_{2} by selecting from W an ordered pair of distinct points $\left(u_{1}, u_{2}\right)$ in $\delta(\delta-1)$ ways and multiplying by the number Θ_{n-2} of $H \in \mathcal{H}$ that contain those two points. This yields $N_{2}=\delta(\delta-1) \Theta_{n-2}$, and the statement in (iii) follows.

Next, we prove (iv). Since for $H \in \mathcal{H}, \delta_{H}$ is the number of points from $W \cap H$, it follows from the definitions of $m_{i}, b_{H, i}$, and Θ_{i} in Notation 7 that

$$
\begin{aligned}
\delta_{H} & =\sum_{i=a}^{t} b_{H, i} \Theta_{i}+\sum_{i=a}^{t}\left(m_{i}-b_{H, i}\right) \Theta_{i-1} \\
& =\sum_{i=a}^{t} b_{H, i}\left(\Theta_{i}-\Theta_{i-1}\right)+\sum_{i=a}^{t} m_{i} \Theta_{i-1} \\
& =\sum_{i=a}^{t} b_{H, i} q^{i-1}+\sum_{i=a}^{t} m_{i} \Theta_{i-1} \\
& =q^{-1} \sum_{i=a}^{t} b_{H, i} q^{i}+q^{-1} \sum_{i=a}^{t} m_{i}\left(\Theta_{i}-1\right) \\
& =q^{-1} \beta_{H}+q^{-1}(\delta-|\mathcal{S}|) .
\end{aligned}
$$

Thus,

$$
\beta_{H}=q \delta_{H}-\delta+|\mathcal{S}|
$$

To show (v), we use (iv) to obtain

$$
\begin{array}{rlr}
\sum_{H \in \mathcal{H}} \beta_{H} & =\sum_{H \in \mathcal{H}}\left(q \delta_{H}-\delta+|\mathcal{S}|\right) \\
& =q \sum_{H \in \mathcal{H}} \delta_{H}-(\delta-|\mathcal{S}|) \Theta_{n} & \\
& \text { (by Proposition 8) } \\
& =q \delta \Theta_{n-1}-(\delta-|\mathcal{S}|) \Theta_{n} \quad \text { (by (ii)) } \\
& =|\mathcal{S}| \Theta_{n}-\delta . &
\end{array}
$$

Next, we prove (vi).

$$
\begin{aligned}
\sum_{H} \beta_{H}^{2} & =\sum_{H}\left(q \delta_{H}-\delta+|\mathcal{S}|\right)^{2} \quad(\text { by (iv) }) \\
& =q^{2} \sum_{H} \delta_{H}^{2}-2 q(\delta-|\mathcal{S}|) \sum_{H} \delta_{H}+\sum_{H}(\delta-|\mathcal{S}|)^{2} \\
& =q^{2}\left(\delta(\delta-1) \Theta_{n-2}+\sum_{H} \delta_{H}\right)-2 q(\delta-|\mathcal{S}|) \sum_{H} \delta_{H}+(\delta-|\mathcal{S}|)^{2} \Theta_{n} \quad \text { (by (iii) and Proposition 8) } \\
& =q^{2} \delta(\delta-1) \Theta_{n-2}+\left(q^{2}-2 q(\delta-|\mathcal{S}|)\right) \delta \Theta_{n-1}+(\delta-|\mathcal{S}|)^{2} \Theta_{n} \quad \text { (by (ii)) } \\
& =\delta(\delta-1)\left(\Theta_{n}-\Theta_{2}\right)+\delta(q-2 \delta+2|\mathcal{S}|)\left(\Theta_{n}-\Theta_{1}\right)+(\delta-|\mathcal{S}|)^{2} \Theta_{n} \\
& =\Theta_{n}\left(|\mathcal{S}|^{2}+\delta(q-1)\right)-\delta(\delta-1) \Theta_{2}-\delta(q-2 \delta+2|\mathcal{S}|) \Theta_{1} \\
& =\Theta_{n}\left(|\mathcal{S}|^{2}+\delta(q-1)\right)-\delta^{2}(q-1)-\delta(2|\mathcal{S}|-1)
\end{aligned}
$$

Finally, we prove (vii).

$$
\sum_{H}\left(\beta_{H}-(|\mathcal{S}|-1)\right)\left(\beta_{H}-(\delta(q-1)+|\mathcal{S}|)\right)
$$

$$
\begin{aligned}
& =\sum_{H} \beta_{H}^{2}-(\delta(q-1)+2|\mathcal{S}|-1) \sum_{H} \beta_{H}+\sum_{H}(|\mathcal{S}|-1)(\delta(q-1)+|\mathcal{S}|) \\
& =\sum_{H} \beta_{H}^{2}-(\delta(q-1)+2|\mathcal{S}|-1)\left(|\mathcal{S}| \Theta_{n}-\delta\right)+\Theta_{n}(|\mathcal{S}|-1)(\delta(q-1)+|\mathcal{S}|) \quad \text { (by (v) and Proposition 8) } \\
& =\sum_{H} \beta_{H}^{2}-\Theta_{n}\left(|\mathcal{S}|^{2}+\delta(q-1)\right)+\delta^{2}(q-1)+\delta(2|\mathcal{S}|-1) \\
& =0 \quad(\text { by }(\mathrm{vi})) .
\end{aligned}
$$

Proof of Theorem 5. Let β_{H} be as defined in Notation 7. Then it follows from part (i) and part (vii) of Lemma 12 that for any hyperplane $H \in \mathcal{H}$, we have

$$
\begin{equation*}
\beta_{H}=|\mathcal{S}|-1=q^{t} \text { or } \beta_{H}=\delta(q-1)+|\mathcal{S}|=c q^{d}+q^{t} . \tag{4}
\end{equation*}
$$

Thus, if x denotes the number of hyperplanes H such that $\beta_{H}=q^{t}$, and if y denotes the number of hyperplanes H such that $\beta_{H}=c q^{d}+q^{t}$, then

$$
\left\{\begin{array}{l}
x+y=\Theta_{n} \\
x q^{t}+y\left(c q^{d}+q^{t}\right)=\sum_{H} \beta_{H}=|\mathcal{S}| \Theta_{n}-\delta=\left(q^{t}+1\right) \Theta_{n}-\frac{c q^{d}-1}{q-1} \quad(\text { by Lemma } 9 \text { and Lemma } 12(\mathrm{v})) .
\end{array}\right.
$$

Solving the above system, yields

$$
x=\frac{q^{n-d}\left(c q^{d}-1\right)}{c(q-1)} \text { and } y=\frac{q^{n-d}-c}{c(q-1)} .
$$

Since $\operatorname{gcd}\left(c, c q^{d}-1\right)=1, \operatorname{gcd}\left(q-1, q^{n-d}\right)=1$, and x is an integer, it follows that $c \mid q^{n-d}$. Thus, $c=q^{j}$, for some positive integer j, which implies that

$$
\begin{equation*}
x=\frac{q^{n-(d+j)}\left(q^{d+j}-1\right)}{q-1} \text { and } y=\frac{q^{n-(d+j)}-1}{q-1} . \tag{5}
\end{equation*}
$$

Since for any hyperplane $H \in \mathcal{H}$ that contains $W=\bigcup_{X \in \mathcal{S}} X$, we have by the choices of β_{H} given in (4), that

$$
\beta_{H}=\sum_{i=a}^{t} b_{H, i} q^{i}=\sum_{i=a}^{t} m_{i} q^{i}>q^{t},
$$

and thus, from (5), the number of hyperplanes containing W is exactly $y=\left(q^{n-(d+j)}-1\right) /(q-1)$. Let $\langle W\rangle$ denote the space spanned by $W=\bigcup_{X \in \mathcal{S}} X$. For any hyperplane $H \in \mathcal{H}$, we have

$$
W \subseteq H \Longleftrightarrow\langle W\rangle \subseteq H
$$

Thus, the number of hyperplanes containing $\langle W\rangle$ is also y; which, by Proposition 8, implies that $\operatorname{dim}\langle W\rangle=d+j$. Moreover, since the number of points in W is

$$
\delta=\frac{c q^{d}-1}{q-1}=\frac{q^{d+j}-1}{q-1}
$$

which is equal to the number of points in $\langle W\rangle$, it follows that $W=\langle W\rangle$ is a subspace of dimension $d+j$.

We now prove the last part of the theorem. Let $a=d+j-t$. Then $a>0$ and W is a subspace of dimension $t+a$ that admits a subspace partition \mathcal{S} which satisfies the hypothesis of Proposition 11. Thus, \mathcal{S} has type $t^{q^{t}+1}$ if $a=t$, and type $t^{1} a^{q^{t}}$ if $a \neq t$.

Acknowledgement: We thank an anonymous referee for carefully reading the paper and for suggesting various changes which helped improve its presentation.

References

[1] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math Z. 60 (1954), 156-186.
[2] A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Z. 145 (1975), 211-229.
[3] A. Beutelspacher, Partitions of finite vector spaces: an application of the Frobenius number in geometry, Arch. Math. 31 (1978), 202-208.
[4] T. Bu, Partitions of a vector space, Discrete Math. 31 (1980), 79-83.
[5] S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, and C. Vanden Eynden, Partitions of finite vector spaces into subspaces, J. Combin. Des. 16 (2008), 329-341.
[6] O. Heden, On the length of the tail of a vector space partition, Discrete Math. 309 (2009), 6169-6180.
[7] O. Heden, A survey of the different types of vector space partitions, Discrete Math. Algorithms Appl., 4 (2012), 1-14.
[8] O. Heden and J. Lehmann, Some necessary conditions for vector space partitions, Discrete Math. 312 (2012), 351-361.
[9] O. Heden, J. Lehmann, E. Năstase, and P. Sissokho, Extremal sizes of subspace partitions, Des. Codes Cryptogr. 64(3) (2012), 265-274.
[10] O. Heden, J. Lehmann, E. Năstase, and P. Sissokho, The supertail of a subspace partition, Des. Codes Cryptogr. 69 (2013), 305-316.
[11] M. Herzog and J. Schönheim, Group partition, factorization and the vector covering problem, Canad. Math. Bull. 15(2) (1972), 207-214.
[12] S. Hong and A. Patel, A general class of maximal codes for computer applications, IEEE Trans. Comput. C-21 (1972), 1322-1331.
[13] B. Lindström, Group partitions and mixed perfect codes, Canad. Math. Bull. 18 (1975), 57-60.
[14] E. Năstase and P. Sissokho, The minimum size of a finite subspace partition, Linear Algebra Appl., 435 (2011), 1213-1221.
[15] E. Năstase and P. Sissokho, The structure of the minimum size supertail of a subspace partition, Des. Codes Cryptogr. 83 (2017), 549-563.
[16] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl. 64 (1964), 1-76.

[^0]: 2010 Mathematics Subject Classification. Primary 51E20; Secondary 51E23.
 Key words and phrases. Subspace partition; vector space partition; supertail of a subspace partition. nastasee@xavier.edu, psissok@ilstu.edu.

