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Abstract. Let q be a prime power and let n be a positive integer. Let V = V (n, q) denote the
vector space of dimension n over Fq. A subspace partition P of V is a collection of subspaces of
V with the property that each nonzero vector is in exactly one of the subspaces in P. Suppose
that d1, . . . , dk are the different dimensions, in increasing order, that occur in the subspace partition
P. For any integer s, with 2 ≤ s ≤ k, the ds-supertail S of P is the collection of all subspaces
X ∈ P such that dimX < ds. It was shown that |S| ≥ σq(ds, ds−1), where σq(ds, ds−1) denotes the
minimum number of subspaces over all subspace partitions of V (ds, q) in which the largest subspace
has dimension ds−1. Moreover, it was shown that if ds ≥ 2ds−1 and equality holds in the previous
bound on |S|, then the union of the subspaces in S forms a subspace. This characterization was
also conjectured to hold if ds < 2ds−1. This conjecture was recently proved in certain cases. In this
paper, we use a much simpler approach to completely settle this conjecture.

1. Introduction

Let q be a prime power and let n be a positive integer. Let V = V (n, q) denote the vector
space of dimension n over Fq. A subspace of dimension t is referred to as a t-subspace. A subspace
partition, or vector space partition, P of V , is a collection of subspaces of V with the property that
each nonzero vector is in exactly one of the subspaces in P . A well-known example of a subspace
partition is a spread, which is a subspace partition in which all subspaces have the same dimension.
Pioneering work on spreads has been done by several researchers, e.g., André [1] and Segre [14].
Research work on subspace partitions has also been carried since the early 1900’s, e.g., see Heden [7]
for a survey. A special feature of subspace partitions is that they naturally occur in various fields
such as finite geometry, coding theory, and design theory, e.g., see [1, 2, 9, 10, 14] and the references
therein.

One main line of research in the area of subspace partitions is the Classification Problem, which
we shall define after introducing some notation. Given a subspace partition P , of V , the type of P
is the multiset that consists of dimX for all subspaces X ∈ P . The Classification Problem consists
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of finding necessary and/or sufficient conditions for a given multiset of integers that is realizable as
the type of a subspace partition of V . Although there are many results related to the Classification
Problem, e.g., see [3, 4, 5, ?, 11], the main question is still wide open.

Before we describe the main contribution of this paper (Theorem 5), we introduce two necessary
conditions and a few more definitions. Let P be a subspace partition of V (n, q) that contains mdi

subspaces of dimension di for 1 ≤ i ≤ k. In other words, the type of P is the multiset that consists
of mdi copies of di for 1 ≤ i ≤ k. We denote such a multiset by d

md1
1 . . . d

mdk
k . The following

necessary conditions are trivial to derive:

(1)
k∑

i=1

mdi(q
di − 1) = qn − 1 (packing condition)

(2)

{
n ≥ di + dj if mdi+mdj ≥ 2 and i 6= j;

n ≥ 2di if mdi ≥ 2.
(dimension condition)

Let k, di, and mdi be as defined, and let s be an integer such that 2 ≤ s ≤ k. We define the
ds-supertail of P to be the set of all subspaces X ∈ P such that dimX < ds. For any integers d
and t such that 1 ≤ t ≤ d, we also define σq(d, t) to be the minimum number of subspaces over
all subspace partitions of V (d, q) in which the largest subspace has dimension t. It is easy to see
that if t | d, then σq(d, t) = (qd − 1)/(qt − 1), which is the number of subspaces in a t-spread of
V (d, q), i.e., a spread whose subspaces have dimension t. In fact, the exact value of σq(d, t) is given
by the following theorem (see André [1] and Beutelspacher [2] for d (mod t) ≡ 0, and see [?, 12] for
d (mod t) 6≡ 0).

Theorem 1. Let d, k, t, and r be integers such that 0 ≤ r < t, k ≥ 1, and d = kt+ r. Then

σq(d, t) =


(qkt − 1)/(qt − 1) for r = 0,

qt + 1 for r ≥ 1 and 3 ≤ d < 2t,

(qd − qt+r)/(qt − 1) + qd
t+r
2
e + 1 for r ≥ 1 and d ≥ 2t.

Remark 2. If d = 2, then either (k, t, r) = (1, 2, 0), or (k, t, r) = (2, 1, 0). Thus, this d = 2
possibility in Theorem 1 is implicitly covered by the “r = 0” case.

The following theorem generalizes a theorem of Heden [6, Theorem 1], although Heden’s theorem
is stronger and more detailed for the particular case s = 1 for which it holds.

Theorem 3 ( [8]). Let P be a subspace partition of V (n, q) of type d
md1
1 . . . d

mdk
k and let 2 ≤ s ≤ k.

If S is a ds-supertail of P, then

(3) |S| ≥ σq(ds, ds−1) .

If equality holds in (3), then S is called a minimum size supertail, and Theorem 3 has the following
interesting corollary.

Corollary 4 ([8]). If |S| = σq(ds, ds−1) and ds ≥ 2ds−1, then the union of the subspaces in S forms
a subspace.

Note that the union of the subspaces in a ds-supertail does not have to be a subspace in general.
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For s = 2, i.e., when S consists of subspaces of dimension d1 only, Heden [6, Theorem 3] proved
that the conclusion of Corollary 4 also holds when ds < 2ds−1. That result was recently extended
in [13] for the following three additional cases:

(i) s− 1 ≤ 2, that is S contains subspaces of at most 2 different dimensions;
(ii) ds = 2ds−1 − 1; or
(iii) the subspaces in P \ S have the same dimension.

In this paper, we completely settle the case when ds < 2ds−1, and give a complete characterization
of the structure of a minimum size supertail. Our main theorem is as follows.

Theorem 5. Let P be a subspace partition of V (n, q) of type d
md1
1 . . . d

mdk
k . Let 2 ≤ s ≤ k, d = ds,

and t = ds−1, and suppose S is a d-supertail of P such that |S| = σq(d, t) = qt + 1 and d < 2t.
Then, the set of points of V (n, q) covered by the subspaces in the supertail S forms a subspace W .
Moreover, S is a subspace partition of W whose type is either tq

t+1, or t1aq
t
, for some integer a ≥ 1.

By combining Corollary 4 and Theorem 5, we thus have the following theorem. This proves the
conjecture stated in [8].

Theorem 6. Let P be a subspace partition of V (n, q) of type d
md1
1 . . . d

mdk
k . If S is a ds-supertail of

P of size |S| = σq(ds, ds−1), then the set of points of V (n, q) covered by the subspaces in S forms a
subspace.

2. Proof of the main theorem

We now give some notation which is used in the rest of the paper.

Notation 7. (1) Let P denote a subspace partition of V (n, q) of type d
md1
1 . . . d

mdk
k , and let S

denote a ds-supertail of P of minimum size |S| = σq(ds, ds−1).
(2) Set t = ds−1 and d = ds with t < d < 2t. Thus, |S| = σq(d, t) = qt + 1.
(3) For any integer i ≥ 0, let Θi = (qi − 1)/(q − 1). Thus, if i ≥ 1, then Θi is the the number

of points, i.e., 1-subspaces, in an i-subspace.
(4) Let H denote the set of all hyperplanes of V (n, q).
(5) For H ∈ H, and any integer i ≥ 1, let bH,i denote the number of i-subspaces X ∈ S such

that X ⊆ H.
(6) For H ∈ H, let βH =

∑t
i=a bH,iq

i, where a ≤ dimX ≤ t for any X ∈ S.

We will use the following elementary result that needs no further reference.

Proposition 8. The number of hyperplanes H ∈ H that contain a given k-subspace of V (n, q) is
Θn−k. In particular, H contains Θn hyperplanes.

We will also need the following lemma from [13, Lemma 16].

Lemma 9. Let P, S, t, and d be as defined in Notation 7. If H ∈ H, then

βH ≥ qt and
t∑

i=1

miΘi =
cqd − 1

q − 1

for some integer c ≥ 1.

Remark 10. The bound βH ≥ qt in Lemma 9 plays an important role in the proof of our main
theorem. The proof of this bound relies on results proved in [8] by Heden, Lehmann, and the authors
of this paper.



4 ESMERALDA L. NĂSTASE AND PAPA A. SISSOKHO

We will use the following easy proposition in the proof of Theorem 5. However, for the sake of
completeness, we include a proof of it.

Proposition 11. Let a and t be positive integers such that t ≥ a. If S is a subspace partition of
V (t + a, q) that contains qt + 1 subspaces, of which one is a subspace X of dimension t, then all
subspaces in S \ {X} have dimension a.

Proof. For any Y ∈ S \ {X}, the dimension condition (2) implies that dimY ≤ a. Thus, the
proposition follows from the packing condition (1) and the following identity

qt+a − 1 = (qt − 1) +

qt∑
i=1

(qa − 1).

�

Finally, we now prove the following technical lemma.

Lemma 12. Let P, S, and t, be as defined in Notation 7. Let W =
⋃

X∈S X and let δ = δ(S)
denote the number of points, i.e., 1-subspaces, of W . For H ∈ H, let δH = δH(S) be the number of
points in W ∩H. Then
(i) |S| − 1 = qt ≤ βH ≤ cqd + qt = δ(q − 1) + |S|
(ii)

∑
H δH = δΘn−1

(iii)
∑

H δH(δH − 1) = δ(δ − 1)Θn−2.
(iv) βH = qδH − δ + |S|.
(v)

∑
H βH = |S|Θn − δ.

(vi)
∑

H β
2
H = Θn (|S|2 + δ(q − 1))− δ2(q − 1)− δ(2|S| − 1).

(vii)
∑

H (βH − (|S| − 1)) (βH − (δ(q − 1) + |S|)) = 0.

Proof. Applying Lemma 9 and using |S| = qt + 1, gives

βH ≥ qt = |S| − 1.

Using the definitions of δ and Θi, we obtain

βH =
t∑

i=a

bH,iq
i ≤

t∑
i=1

miq
i = δ(q − 1) + |S|,

which concludes the proof of (i).
To prove (ii), we count in two ways the number N1 of pairs (u,H) such that u is a point in both

S and the hyperplane H ∈ H, i.e., u ∈ W ∩H. We first determine N1 by selecting u from W ∩H,
and then summing over all H ∈ H, to obtain N1 =

∑
H δH . Second, we determine N1 by selecting

u from W =
⋃

X∈S X in δ ways, and multiplying it by the number Θn−1 of H ∈ H that contain u.
This yields N1 = δΘn−1, and the proof of (ii) is complete.

To prove (iii), we count in two ways the number N2 of triples (u1, u2, H) such that u1 and u2 are
distinct points that are contained in both W and the hyperplane H ∈ H. First, we determine N2

by fixing H ∈ H and by selecting from W ∩H an ordered pair of distinct points (u1, u2). Since the
number of points in H is denoted by δH , we can sum over all H ∈ H to obtain N2 =

∑
H δH(δH−1).

Second, we determine N2 by selecting from W an ordered pair of distinct points (u1, u2) in δ(δ− 1)
ways and multiplying by the number Θn−2 of H ∈ H that contain those two points. This yields
N2 = δ(δ − 1)Θn−2, and the statement in (iii) follows.
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Next, we prove (iv). Since for H ∈ H, δH is the number of points from W ∩H, it follows from
the definitions of mi, bH,i, and Θi in Notation 7 that

δH =
t∑

i=a

bH,iΘi +
t∑

i=a

(mi − bH,i)Θi−1

=
t∑

i=a

bH,i(Θi −Θi−1) +
t∑

i=a

miΘi−1

=
t∑

i=a

bH,iq
i−1 +

t∑
i=a

miΘi−1

= q−1

t∑
i=a

bH,iq
i + q−1

t∑
i=a

mi(Θi − 1)

= q−1βH + q−1(δ − |S|).

Thus,

βH = qδH − δ + |S|.
To show (v), we use (iv) to obtain∑

H∈H

βH =
∑
H∈H

(qδH − δ + |S|)

=q
∑
H∈H

δH − (δ − |S|)Θn (by Proposition 8)

=qδΘn−1 − (δ − |S|)Θn (by (ii))

=|S|Θn − δ.

Next, we prove (vi).∑
H

β2
H =

∑
H

(qδH − δ + |S|)2 (by (iv))

= q2
∑
H

δ2
H − 2q(δ − |S|)

∑
H

δH +
∑
H

(δ − |S|)2

= q2

(
δ(δ − 1)Θn−2 +

∑
H

δH

)
− 2q (δ − |S|)

∑
H

δH + (δ − |S|)2Θn (by (iii) and Proposition 8)

= q2δ(δ − 1)Θn−2 +
(
q2 − 2q(δ − |S|)

)
δΘn−1 + (δ − |S|)2Θn (by (ii))

= δ(δ − 1)(Θn −Θ2) + δ (q − 2δ + 2|S|) (Θn −Θ1) + (δ − |S|)2Θn

= Θn

(
|S|2 + δ(q − 1)

)
− δ(δ − 1)Θ2 − δ(q − 2δ + 2|S|)Θ1

= Θn

(
|S|2 + δ(q − 1)

)
− δ2(q − 1)− δ(2|S| − 1).

Finally, we prove (vii).∑
H

(βH − (|S| − 1)) (βH − (δ(q − 1) + |S|))
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=
∑
H

β2
H − (δ(q − 1) + 2|S| − 1)

∑
H

βH +
∑
H

(|S| − 1)(δ(q − 1) + |S|)

=
∑
H

β2
H − (δ (q − 1) + 2|S| − 1) (|S|Θn − δ) + Θn (|S| − 1) (δ(q − 1) + |S|) (by (v) and Proposition 8)

=
∑
H

β2
H −Θn

(
|S|2 + δ(q − 1)

)
+ δ2(q − 1) + δ(2|S| − 1)

= 0 (by (vi)).

�

Proof of Theorem 5. Let βH be as defined in Notation 7. Then it follows from part (i) and part
(vii) of Lemma 12 that for any hyperplane H ∈ H, we have

(4) βH = |S| − 1 = qt or βH = δ(q − 1) + |S| = cqd + qt.

Thus, if x denotes the number of hyperplanes H such that βH = qt, and if y denotes the number of
hyperplanes H such that βH = cqd + qt, thenx+ y = Θn

xqt + y(cqd + qt) =
∑

H βH = |S|Θn − δ = (qt + 1)Θn −
cqd − 1

q − 1
(by Lemma 9 and Lemma 12 (v)).

Solving the above system, yields

x =
qn−d(cqd − 1)

c(q − 1)
and y =

qn−d − c
c(q − 1)

.

Since gcd(c, cqd − 1) = 1, gcd(q − 1, qn−d) = 1, and x is an integer, it follows that c | qn−d. Thus,
c = qj, for some positive integer j, which implies that

(5) x =
qn−(d+j)(qd+j − 1)

q − 1
and y =

qn−(d+j) − 1

q − 1
.

Since for any hyperplane H ∈ H that contains W =
⋃

X∈S X, we have by the choices of βH given
in (4), that

βH =
t∑

i=a

bH,iq
i =

t∑
i=a

miq
i > qt,

and thus, from (5), the number of hyperplanes containing W is exactly y = (qn−(d+j) − 1)/(q − 1).
Let 〈W 〉 denote the space spanned by W =

⋃
X∈S X. For any hyperplane H ∈ H, we have

W ⊆ H ⇐⇒ 〈W 〉 ⊆ H.

Thus, the number of hyperplanes containing 〈W 〉 is also y; which, by Proposition 8, implies that
dim〈W 〉 = d+ j. Moreover, since the number of points in W is

δ =
cqd − 1

q − 1
=
qd+j − 1

q − 1
,

which is equal to the number of points in 〈W 〉, it follows that W = 〈W 〉 is a subspace of dimension
d+ j.
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We now prove the last part of the theorem. Let a = d+ j− t. Then a > 0 and W is a subspace of
dimension t+a that admits a subspace partition S which satisfies the hypothesis of Proposition 11.
Thus, S has type tq

t+1 if a = t, and type t1aq
t

if a 6= t. �
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