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Abstract. Let q be a fixed prime power and let V (n, q) denote a vector space of dimension
n over the Galois field with q elements. A subspace partition (also called “vector space
partition”) of V (n, q) is a collection of subspaces of V (n, q) with the property that every
nonzero element of V (n, q) appears in exactly one of these subspaces.

Given positive integers a, b, n such that 1 ≤ a < b < n, we say a subspace partition of
V (n, q) has type axby if it is composed of x subspaces of dimension a and y subspaces of
dimension b. Let c = gcd(a, b). In this paper, we prove that if b divides n, then one can
(algebraically) construct every possible subspace partition of V (n, q) of type axby whenever
y ≥ (qe−1)/(qb−1), where 0 ≤ e < ab/c and n ≡ e (mod ab/c). Our construction allows us
to sequentially reconfigure batches of (qa−1)/(qc−1) subspaces of dimension b into batches
of (qb−1)/(qc−1) subspaces of dimension a. In particular, this accounts for all numerically
allowed subspace partition types axby of V (n, q) under some additional conditions, e.g.,
when e = b.
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1. Introduction

Let q be a fixed prime power throughout this article and V (n, q) denote a vector space of
dimension n over the Galois field Fq with q elements. A subspace partition (also called “vector space
partition”) of V (n, q) is a collection of subspaces of V (n, q) with the property that every nonzero
element of V (n, q) appears in exactly one of these subspaces (e.g., see [3, 8, 12]). Subspace partitions
can be used to construct combinatorial designs, classical codes, and more recently subspace codes
(e.g., [4, 7, 9, 10]). Let a, b, m, n be positive integers. We will use the common notation

[n]q =
qn − 1

q − 1

for the Gaussian coefficient counting the 1-dimensional subspaces of V (n, q), which form its finest
subspace partition; note that [1]q = 1. We have (qm − 1) | (qn − 1), and hence, [m]q | [n]q, if and
only if m | n (the vertical bar denotes “divides in Z.”) It follows that for c = gcd(a, b), we have

gcd(qa − 1, qb − 1) = qc − 1 =⇒ gcd([a]q, [b]q) = [c]q.

It was shown by André [1] and Segre [19] that V (n, q) admits a subspace partition whose sub-
spaces are of the same dimension a (i.e., a spread) if and only if a divides n. However, the problem
of finding necessary and sufficient conditions for all possible combinations of a-dimensional and
b-dimensional subspaces is still open in general.

For simplicity, we say a subspace partition has type axby if it is composed of x subspaces of
dimension a and y subspaces of dimension b. Note that the following necessary (but in general,
not sufficient) condition on the counts of nonzero vectors must be satisfied for the existence of a
subspace partition of type axby:

(1) x(qa − 1) + y(qb − 1) = qn − 1.
1
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If a = 1 and b > 1, then the problem of finding necessary and sufficient conditions for the existence
of a subspace partition of V (n, q) of type 1xby is equivalent to finding the maximum size of a partial
b-spread, i.e., the maximum number of mutually skewed subspaces of dimension b in V (n, q). See
Beutelspacher [3], Drake-Freeman [6], and Hong-Patel [11] for earlier results, and for some recent
progress in this direction, see Kurz [13, 14] and Năstase-Sissokho [15]. For a = 2 and b = 3, the
necessary and sufficient conditions for the existence of a subspace partition of V (n, q) of type 2x3y

are given in El-Zanati et al. [16].
If a | n and b | n, then it is shown by Blinco et al. [4] that Eq. (1) is also a sufficient condition

for a subspace partition of type axby to exist. For a = 2 and b > 3, the problem of determining the
partitions of V (n, q) of type 2xby was considered by Seelinger et al. in a series of two papers [17, 18].
In [17], they proved that the existence of subspace partitions of V (n, q) of type 2xby for a suitable
range of solutions (x, y) implies the existence of subspace partitions of V (n + b, q) of type 2xby

for almost all solutions (x, y). In their follow-up paper [18], they focused on the case q = 2 and
proved the existence of partitions of V (n, 2) of type 2xby for almost all solutions (x, y) without any
pre-condition.

In the current article, we consider the extension of this case where the smaller dimension a is
arbitrary but b | n. Under this hypothesis, we show that for any nonnegative solution (x, y) of
Eq. (1) where y is large enough, we can construct a subspace partition of V (n, q) of type axby.
More precisely, we prove the following theorem.

Theorem 1. Let a, b, n be fixed positive integers such that b > a, n ≥ ab/ gcd(a, b), and b divides n.
Let d be the largest common multiple of a and b such that d ≤ n. For convenience, set c = gcd(a, b),
e = n− d, and s = e/b. Then
(i) There is a subspace partition of V (n, q) of each type

ai[b]q/[c]q b[n]q/[b]q−i[a]q/[c]q

for all i such that

0 ≤ i ≤ qe[d]q[c]q
[a]q[b]q

.

Thus, this accounts for all subspace partitions of V (n, q) of type axby with y ≥ [e]q/[b]q.
(ii) Moreover, if [s]qb < [a/c]qc, e.g., when s = 1 and e = b, then all possible subspace partition
types axby of V are covered by this list.

Remark 1. (1) If c = 1, then there is a subspace partition of V (n, q) of each type

ai[b]q b[n]q/[b]q−i[a]q for all i such that 0 ≤ i ≤ qe[d]q
[a]q [b]q

.

(2) If y < [e]q/[b]q, then our results are limited by fact that we do not have necessary and
sufficient conditions for the existence of subspace partitions of V (e, q) type axby when e <
ab/ gcd(a, b).

Example 2. Let a = 6 and b = 15 so that c = gcd(15, 6) = 3. Let n = d + e, with d = 30t
for some positive integer t, and e = 15. Since a and b both divide d, and s = 1, it follows from
Theorem 1 that for any prime power q, there are subspace partitions of V (30t + 15, q) containing
xi = i[15]q/[3]q subspaces of dimension 6 and yi = [30t+15]q/[15]q−i[6]q/[3]q subspaces of dimension
15, where 0 ≤ i ≤ q15[30t]q[3]q/[6]q[15]q. Moreover, this accounts for all possible subspace partitions
of V (30t+ 15, q) with subspaces of dimensions 6 and 15.

Our approach combines the methods in [17, 18] with the properties of double cosets1. This is
similar to the method of switching reguli in finite geometry. In particular, given a direct sum

1These double coset properties are implicit [4, Lemma 2.1], but we use them in a more extensive and
explicit way here.
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decomposition of V (n, q) = U ⊕W , where U,W 6= {0}, b divides dimU , and both a and b divide
dimW , we use an imposed field structure on W to find ways of partitioning the set U +W into all
possible combinations of a-dimensional and b-dimensional subspaces. If S, S′ are subsets of a field
W = Fqd and ω is an element of W , then we will denote by S+S′ the subset {σ+σ′ : σ ∈ S, σ′ ∈ S′},
by SS′ the subset {σσ′ : σ ∈ S, σ′ ∈ S′}, by ωS the subset {ωσ : σ ∈ S}, and by S∗ the subset
{σ ∈ S : σ 6= 0} of W .

In order to properly manage the various combinations of a- and b-subspaces mentioned above, we
use the set partition of the multiplicative group W ∗ into double cosets relative to its subgroups Γ∗

and ∆∗, where Γ and ∆ are the unique subfields of W of orders qa and qb, and hence, a-dimensional
and b-dimensional subspaces of W over Fq, respectively. The existence of such subfields of Fqd is
due to the following well-known characterization.

Lemma 3. Let a, b, d be positive integers.
(i) Let Γ be an a-dimensional subspace of W = Fdq . Then W can be simultaneously identified with
the field Fqd and Γ with the unique subfield of Fqd of order qa if and only if a | d. In this case, we
write W ' Fqd and Γ ' Fqa.

(ii) The intersection of the unique subfields of Fqd of orders qa and qb (for a, b dividing d) is a

subfield of all three, i.e., the unique one of order q gcd(a,b).
(iii) If a | d, then Fqa is an Fq-subspace of Fqd of dimension a.

To avoid the extra calculations due to a possible non-unity greatest common divisor of subspace
dimensions, we state a general conversion principle:

Lemma 4. Let a, a1, . . . , ar, c, n be positive integers and x1, . . . , xr be nonnegative integers. Then
the following are true:
(i) If c | n, then V (n/c, qc) ' Fqc(n/c) can be identified with V (n, q) ' Fqn, where V (n, q) has the

same underlying set as V (n/c, qc), the same vector addition, and the same multiplication restricted
to scalars from the field Fq ⊆ Fqc.
(ii) If c | a and a | n, then every (a/c)-spread of V (n/c, qc) has cardinality

[n/c]qc

[a/c]qc
=

[n]q
[a]q

.

In particular, the number of subspaces of V (n/c, qc) of dimension 1 = c/c is

[n/c]qc =
[n]q
[c]q

.

(iii) If c | a1, . . . , c | ar, c | n, and V (n/c, qc) has a subspace partition of type

(a1/c)
x1 · · · (ar/c)xr ,

then V (n, q) has a subspace partition of type

ax11 · · · a
xr
r .

We may therefore, without loss of generality, assume that the subspace dimensions a and b in
our partitions are relatively prime where convenient. All vector spaces are understood to be over
the generic field Fq (unless otherwise stated), which will in turn be identified with the unique
1-dimensional subfield if the vector space has been given a field structure.

2. Cosets and Double Cosets: Reconfiguration of Partitions of W

The next lemma is essentially due to Beutelspacher [3], and independently, to Bu [5]. It gives a
construction of an a-spread of V (q, d) for a divisor a of d via cosets of F∗qa in F∗

qd
.
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Lemma 5. Let a and d be positive integers such that a | d. Let W = Fdq with a field structure, so
that W ' Fqd, and Γ be the unique a-dimensional subspace of W that corresponds to the subfield of
Fqd of order qa.
(i) If ω ∈W ∗, then ωΓ is a linear a-dimensional subspace of W .
(ii) If ω1Γ∗, . . . , ωrΓ

∗ are the distinct cosets of Γ∗ in the multiplicative subgroup W ∗ of W , where
r = |W ∗|/|Γ∗| = [d]q/[a]q, then the a-subspaces ω1Γ, . . . , ωrΓ form a subspace partition of W .

Note that the second part of Lemma 5 follows directly from Lemma 4 and the fact that all
1-dimensional subspaces of V (d/a, qa) form a spread; the [d]q/[a]q elements ωk are simply repre-
sentatives of such subspaces.

We will now move to the next level and study the subspace partitions with two distinct dimensions
a and b. Let us review the following properties of double cosets of two special subgroups of the
multiplicative group of a finite field.

Lemma 6. Let a, b, c, d be positive integers such that c = gcd(a, b), a | d, and b | d. Moreover, let
W = Fqd and Γ, ∆ be the unique subfields of W of orders qa and qb respectively. Then Γ∩∆ is the
unique subfield of W of order qc, containing the scalar field Fq. The following properties hold:
(i) There are

m =
|W ∗| |Γ∗ ∩∆∗|
|Γ∗| |∆∗|

=
[d]q[c]q
[a]q[b]q

distinct double (Γ∗,∆∗)-cosets in W ∗, whose representatives will be denoted by ω1, . . . , ωm:

Γ∗ω1∆∗, . . . ,Γ∗ωm∆∗.

Every double coset Γ∗ωk∆
∗ contains

|Γ∗| |∆∗|
|Γ∗ ∩∆∗|

=
(qa − 1)(qb − 1)

(qc − 1)

elements of W ∗.
(ii) For each k with 1 ≤ k ≤ m, the double coset Γ∗ωk∆

∗ is the disjoint union of [a]q/[c]q left cosets
of ∆∗. The elements γi ∈ Γ∗ below can be chosen freely as coset representatives of Fqc = Γ∗ ∩∆∗

in Γ∗:

Γ∗ωk∆
∗ =

[a]q/[c]q⊔
i=1

(γiωk) ∆∗.

(iii) For each k with 1 ≤ k ≤ m, the double coset Γ∗ωk∆
∗ is the disjoint union of [b]q/[c]q right cosets

of Γ∗. The elements δj ∈ ∆∗ below (same for all k) can be chosen freely as coset representatives of
Fqc = Γ∗ ∩∆∗ in ∆∗:

Γ∗ωk∆
∗ =

[b]q/[c]q⊔
j=1

Γ∗ (ωkδj) .

(iv) With notation as above, the [d]q/[c]q elements γi ωk δj are distinct for 1 ≤ i ≤ [a]q/[c]q, 1 ≤
j ≤ [b]q/[c]q, and 1 ≤ k ≤ m and form representatives of a c-spread of W of the form {γiωkδjFqc}.

Proof. (i) Since W ∗ is abelian, all subgroups of W ∗ are normal, and the distinction between left
and right cosets is for notational purposes only. In particular, the set Γ∗∆∗ is a subgroup of W ∗.
From the formula for the cardinality of the product of two subgroups of a finite group, we obtain

|Γ∗∆∗| = |Γ∗| |∆∗|
|Γ∗ ∩∆∗|

=
(qa − 1)(qb − 1)

(qc − 1)
.
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Now, each double coset Γ∗ωk∆
∗ is a left coset ωk(Γ

∗∆∗) of the subgroup Γ∗∆∗ and has the same
cardinality as Γ∗∆∗, computed above. Therefore, the qd − 1 elements of W ∗ are partitioned into

m =
|W ∗|
|Γ∗∆∗|

=
(qd − 1)(qc − 1)

(qa − 1)(qb − 1)
=

[d]q[c]q
[a]q[b]q

double cosets.
(ii) We write

Γ∗ωk∆
∗ =

⋃
γ∈Γ∗

(γωk)∆
∗,

where any two left cosets of ∆∗ in W ∗ are either equal or disjoint. To compute the number of disjoint
cosets in this union, we divide the total number of elements of Γ∗ωk∆

∗ by |∆∗| (see part (i)):

(qa − 1)(qb − 1)

(qc − 1)(qb − 1)
=

[a]q
[c]q

.

Therefore, we can choose elements γ1, . . . , γ[a]q/[c]q ∈ Γ∗ such that γ1ωk, . . . , γ[a]q/[c]qωk are distinct
coset representatives of ∆∗ in W ∗. Moreover, we have

γiωk∆
∗ = γi′ωk∆

∗ ⇐⇒ γi∆
∗ = γi′∆

∗ ⇐⇒ γiγ
−1
i′ ∈ Γ∗ ∩∆∗ = Fqc .

As a result, it suffices to fix a complete set γ1, . . . , γ[a]q/[c]q of coset representatives of Fqc in Γ∗

regardless of the value of k.
(iii) Similar to the proof of part (ii).
(iv) If (i, j, k) 6= (i′, j′, k′), then at least one of the following must be true for the elements γiωkδj
and γi′ωk′δj′ of W ∗: they are (a) in distinct double (Γ∗,∆∗)-cosets; or (b) in distinct left cosets of
∆∗; or (c) in distinct right cosets of Γ∗. Hence, such elements cannot be equal. In addition, we
observe that there are

[a]q
[c]q

[d]q[c]q
[a]q[b]q

[b]q
[c]q

=
[d]q
[c]q

= [W ∗ : F∗qc ]

of them, and

γiωkδjFqc = γi′ωk′δj′Fqc
=⇒ γiωkδj = γi′ωk′ δj′λ︸︷︷︸

∈∆∗

∈ Γ∗ωk∆
∗ ∩ Γ∗ωk′∆

∗, λ ∈ Fqc

=⇒ k = k′ by part (i), and γiγ
−1
i′ = δ−1

j δj′λ ∈ Γ∗ ∩∆∗ = Fqc

=⇒ i = i′ and j = j′ by parts (ii) and (iii). �

We may now assert that there are subspace partitions of W of all types axby that are allowed by
the condition in Eq. (1), that is, x(qa − 1) + y(qb − 1) = qd − 1. Therefore, our statement recovers
a result of Blinco et al. [4]

Lemma 7. Let a, b, c, d be positive integers such that c = gcd(a, b), a | d, and b | d. Then the
collection of m = [d]q[c]q/([a]q[b]q) subsets Γωk∆ of V (d, q) have pairwise zero intersection. Each
set Γωk∆ in this collection is simultaneously the union of subspaces (γiωk)∆ that form a partial
b-spread of V (d, q) of cardinality [a]q/[c]q and the union of subspaces Γ(ωkδj) that form a partial
a-spread of cardinality [b]q/[c]q. As a result, there exist subspace partitions of V (d, q) of all types

ai[b]q/[c]q b[d]q/[b]q−i[a]q/[c]q ,

with 0 ≤ i ≤ m.

Proof. See Lemma 6 and Lemma 5. Clearly, all nonnegative solutions (x, y) of the Diophantine
equation [a]qx+ [b]qy = [d]q are represented by the listed subspace partitions of types axby. �



6 FUSUN AKMAN AND PAPA A. SISSOKHO

3. Reconfiguring the Transversal Subspaces of U ⊕W

In this section, we assume that a and b are relatively prime. We arrange the existing notation
under this convention in Table 1. We now describe the construction depicted in Figure 1.

Table 1. Notation for W when gcd(a, b) = 1

Object Description Size/range

W Fq-space with field structure dimW = d > 0
Γ subfield of W dim Γ = a, a | d
∆ subfield of W dim ∆ = b, b | d
γi F∗q-coset rep in Γ∗, γ1 = 1 1 ≤ i ≤ [a]q
δj F∗q-coset rep in ∆∗, δ1 = 1 1 ≤ j ≤ [b]q
ωk double (Γ∗,∆∗)-coset rep in W ∗, ω1 = 1 1 ≤ k ≤ m = [d]q/([a]q[b]q)

γiωkδj F∗q-coset rep in W ∗ [d]q
ωkδj Γ∗-coset rep in W ∗ [d]q/[a]q
γiωk ∆∗-coset rep in W ∗ [d]q/[b]q

Figure 1. Configuration of the Construction

f

f

g

g

U

B

Fq
A

W

Γ

Fq

∆

Construction 8. (1) For positive integers a, b, d, e such that a < b, gcd(a, b) = 1, b | e, a | d,
and b | d, consider two vector spaces U and W over Fq of dimensions e and d respectively.
We shall describe constructions of subspace partitions of V = U ⊕W consisting of a- and

b-subspaces only. We have n
def
= dimV = e+ d, is divisible by b but not necessarily by a.

(2) We impose a field structure on W and let Γ, ∆ be the unique subfields of orders qa and qb

respectively, intersecting at the subfield isomorphic to the scalar field Fq. Choose elements
γi ∈ Γ∗, δj ∈ ∆∗, and ωk ∈ W ∗ as in Lemma 6, with 1 ≤ i ≤ [a]q, 1 ≤ j ≤ [b]q, and
1 ≤ k ≤ m = [d]q/([a]q[b]q). Without loss of generality, let γ1 = δ1 = ω1 = 1 ∈W .

(3) We also endow U with a field structure. Let B be its unique subfield of order qb and
υ1, . . . , υ[e]q/[b]q be a set of B∗-coset representatives in U∗. By Lemma 5, the b-subspaces
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υ1B, . . . , υ[e]q/[b]qB form a b-spread of U . Without loss of generality, let υ1 = 1 ∈ U . We
also fix an a-dimensional subspace A of B such that Fq is contained in A.

(4) We now identify various subspaces and subfields. Let g : ∆ → B be a field isomorphism,
which necessarily satisfies g(δ1) = g(1) = 1; set βj = g(δj) for 1 ≤ j ≤ [b]q. Without loss
of generality, assume that β1, . . . , β[a]q ∈ A, and that the first a of them, β1, . . . , βa, form

a basis of A. We define an Fq-linear isomorphism f : Γ→ A by setting f(γi)
def
= βi = g(δi)

for 1 ≤ i ≤ a. Finally, let αi
def
= βi for 1 ≤ i ≤ [a]q.

We display the new information from Construction 8 in Table 2.

Table 2. Notation for V = U ⊕W when gcd(a, b) = 1

Object Description Size/range

U Fq-space with field structure dimU = e > 0
W Fq-space with field structure dimW = d > 0
V U ⊕W, Fq-space dimV = n = e+ d
B subfield of U dimB = b, b | e, b | d
A subspace of B containing Fq dimA = a < b, a | d
f linear isomorphism f : Γ→ A
g field isomorphism g : ∆→ B
υ` B∗-coset reps in U∗, υ1 = 1 1 ≤ ` ≤ [e]q/[b]q
βj g(δj), F∗q-coset reps in B∗, β1 = 1 1 ≤ j ≤ [b]q
αi βi = f(γi) = g(δi), reps of 1-D subspaces in A, α1 = 1 1 ≤ i ≤ [a]q
υ`βj F∗q-coset reps in U∗ [e]q

We will now construct a partial a-spread of V = U ⊕W whose subspaces have the property
that all nonzero vectors have nonzero projections onto U and W : we will call any such subspace
transversal. Hence, these subspaces have pairwise trivial intersection with those in each of the
subspace partitions of W that we have described in Lemma 7.

Lemma 9. Let the notation be as in Tables 1 and 2, with gcd(a, b) = 1. For each triple (υ, j, k)
with υ ∈ U∗, 1 ≤ j ≤ [b]q, and 1 ≤ k ≤ [d]q/([a]q[b]q), we define a map

φ
(k,υ)
j

def
= υ · f + ωkδj · id Γ : Γ→ U ⊕W.

Then φ
(k,υ)
j is Fq-linear and injective. Hence, the subspaces

A
(k,υ)
j

def
= Imφ

(k,υ)
j = {υf(γ) + γωkδj : γ ∈ Γ}

of U ⊕W are a-dimensional over Fq. Moreover, we have A
(k,υ)
j = A

(k′,υ′)
j′ if (υ, j, k) = (υ′, j′, k′)

and A
(k,υ)
j ∩A(k′,υ′)

j′ = {0} otherwise, giving rise to a partial a-spread of U⊕W with (qe−1)[d]q/[a]q
transversal subspaces.

Proof. Linearity is clear. If υf(γ)+γωkδj = 0, then we must have f(γ) = 0 since υ 6= 0, and γ = 0

since f is injective. This shows that φ
(k,υ)
j is injective.

Assume that for some υ, υ′ ∈ U∗, j, j′ ∈ {1, . . . , [b]q}, k, k′ ∈ {1, . . . , [d]q/([a]q[b]q)}, and γ, γ′ ∈
Γ∗, we have

υf(γ) + γωkδj = υ′f(γ′) + γ′ωk′δj′ .
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By the construction of coset representatives of Γ∗ in W ∗ (see Table 1), we must have j = j′ and
k = k′. Thus, from the above, we first obtain γ = γ′ and υf(γ) = υ′f(γ′), from which we may
conclude υ = υ′. �

Remark 10. This construction is optimal in the sense that if a were to divide e as well, then
together with a-spreads of U and W , we would obtain a total of

(qe − 1)
[d]q
[a]q

+
[e]q
[a]q

+
[d]q
[a]q

=
qe[d]q + [e]q

[a]q
=

[n]q
[a]q

subspaces, forming an a-spread of V = U ⊕W .

Here is a similar construction of transversal b-subspaces of U ⊕W .

Lemma 11. Let the notation be as in Tables 1 and 2, with gcd(a, b) = 1. For each triple (ν, i, k)
with ν ∈ U∗, 1 ≤ i ≤ [a]q, and 1 ≤ k ≤ [d]q/([a]q[b]q), we define a map

ψ
(k,ν)
i

def
= ν · g + γiωk · id ∆ : ∆→ U ⊕W.

The maps ψ
(k,ν)
i are Fq-linear and injective. The subspaces

B
(k,ν)
i

def
= Imψ

(k,ν)
i = {νg(δ) + γiωkδ : δ ∈ ∆}

of U⊕W are b-dimensional over Fq. Moreover, we have B
(k,ν)
i = B

(k′,ν′)
i′ if (ν, i, k) = (ν ′, i′, k′) and

B
(k,ν)
i ∩ B(k′,ν′)

i′ = {0} otherwise, giving rise to a partial b-spread of U ⊕W with (qe − 1)[d]q/[b]q
transversal subspaces.

Proof. The proof is similar to that of Lemma 9, with Γ∗-coset representatives in W ∗ replaced by
∆∗-coset representatives. �

Remark 12. Since b divides both d and e, together with b-spreads of U and W , we obtain a total
of

(qe − 1)
[d]q
[b]q

+
[e]q
[b]q

+
[d]q
[b]q

=
qe[d]q + [e]q

[b]q
=

[n]q
[b]q

subspaces, forming a b-spread of V = U ⊕W .

Remark 13. Further partitioning the elements of U∗ into B∗-cosets ν`B
∗ (see Table 2), we refine

our construction in Lemma 9 to the a-subspaces

A
(k,`,β)
j

def
= {υ`ββjf(γ) + γωkδj : γ ∈ Γ}

for (β, j, k, `) with β ∈ B∗, 1 ≤ j ≤ [b]q, 1 ≤ k ≤ [d]q/([a]q[b]q), and 1 ≤ ` ≤ [e]q/[b]q. This is still
in full generality as every B∗-coset remains invariant under multiplication by the fixed element βj
of B∗ (resp., by αi = βi below.) Similarly, we define b-subspaces that are more nuanced with respect
to Lemma 11 via

B
(k,`,β)
i

def
= {υ`βαig(δ) + γiωkδ : δ ∈ ∆}

for (β, i, k, `) with β ∈ B∗, 1 ≤ i ≤ [a]q, 1 ≤ k ≤ [d]q/([a]q[b]q), and 1 ≤ ` ≤ [e]q/[b]q.

We are ready to describe the main reconfiguration result for two distinct subspace dimensions a
and b.

Proposition 14. Let the notation be as in Table 1, Table 2, and Remark 13, where gcd(a, b) = 1.
Then for all fixed (β, k, `) with β ∈ B∗, 1 ≤ k ≤ [d]q/([a]q[b]q), and 1 ≤ ` ≤ [e]q/[b]q, we have

[b]q⊔
j=1

(
A

(k,`,β)
j

)∗
=

[a]q⊔
i=1

(
B

(k,`,β)
i

)∗
.
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There are

(qe − 1)
[d]q

[a]q[b]q
such possible reconfigurations as β, k, and ` vary.

Proof. For later use, first recall from Construction 8, part (4), that αi
def
= βi for 1 ≤ i ≤ [a]q.

Let

x = υ`ββjf(γ) + γωkδj ∈
(
A

(k,`,β)
j

)∗
.

The element γ ∈ Γ∗ has a unique representation γ = λγi for some λ ∈ F∗q and 1 ≤ i ≤ [a]q. Hence,
we have

λ−1x = υ`ββjf(γi) + γiωkδj = υ`βαig(δj) + γiωkδj ∈
(
B

(k,`,β)
i

)∗
.

Conversely, if

y = υ`βαig(δ) + γiωkδ ∈
(
B

(k,`,β)
i

)∗
,

then the element δ ∈ ∆∗ has a unique representation as δ = λδj for some λ ∈ F∗q and 1 ≤ j ≤ [b]q.
We have

λ−1y = υ`βαig(δj) + γiωkδj = υ`ββjf(γi) + γiωkδj ∈
(
A

(k,`,β)
j

)∗
. �

Let us summarize our findings in this section.

Proposition 15. Let a, b, d, e, n be positive integers such that a < b, gcd(a, b) = 1, a | d, b | d,
b | e, and n = e+ d (see Tables 1 and 2 for further notation.) If U is an Fq-space of dimension e
and W is an Fq-space of dimension d, then there exist (qe − 1)[d]q/([a]q[b]q) disjoint subsets of the
set

(U ⊕W )∗ \ (U∗ tW ∗),
each of which can be set-partitioned both into the nonzero vectors of [b]q subspaces of dimension a
and into those of [a]q subspaces of dimension b.

Remark 16. In order to update the last result to the case c = gcd(a, b), we divide the dimensions
of all subspaces under consideration by c and consider them subspaces over the field Fqc according
to Lemma 4. Over Fqc, we have

|U∗| = (qc)e/c − 1 = qe − 1 (number of nonzero elements of U(e/c, qc)) and

[d/c]q
[a/c]q[b/c]q

=
[d]q/[c]q

[a]q[b]q/[c]2q
=

[d]q[c]q
[a]q[b]q

(number of double cosets in W (d/c, qc).)

Then there are

(qe − 1)
[d]q[c]q
[a]q[b]q

disjoint subsets in Proposition 15, each of which can give us a partial spread of type a[b]q/[c]q or a
partial spread of type b[a]q/[c]q over Fq.

4. Proof of the Main theorem

In this section, we prove our main theorem.

Proof of Theorem 1. The various partitions of the types listed can be directly constructed using
Lemma 7 and Remark 16 following Proposition 15. Nonnegative solutions of the Diophantine
equation Eq. (1) exist, as [b]q | [n]q, and are given by

(2) (xi, yi) =

(
0,

[n]q
[b]q

)
+ i

(
[b]q
[c]q

,− [a]q
[c]q

)
, 0 ≤ i ≤

⌊
[n]q[c]q
[a]q[b]q

⌋
.
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By Lemma 7, we are able to reconfigure between zero and m = [d]q[c]q/([a]q[b]q) batches of a-
subspaces of W (where each batch contains [b]q/[c]q of them) from b-dimensional subspaces as
expected. Next, Remark 16 shows us that there are up to (qe − 1)m additional batches (again, of
[b]q/[c]q subspaces of dimension a each) available by reconfiguration from some of the transversal
b-subspaces. The total number of times we can convert b’s into a’s (the upper limit of i in the
statement of this theorem) is then M = qem = qe[d]q[c]q/([a]q[b]q).

For the second part of the theorem, we obtain yM+1 < 0 in Eq. (2) if and only if the condition
[s]qb < [a/c]qs is satisfied. Thus,

yM+1 =
[sb+ d]q

[b]q
−
(
qsb[d]q[c]q

[a]q[b]q
+ 1

)
[a]q
[c]q

=
[sb+ d]q − qsb[d]q

[b]q
− [a]q

[c]q

=
[sb]q
[b]q
− [a]q

[c]q

= [s]qb − [a/c]qc .

If a divides b, then V (n, q) clearly admits a subspace partition of type a[n]q/[a]q , i.e., an a-spread.
Thus, when e = b, we have s = 1 and either a divides b or [s]qb < [a/c]qc . In both cases all possible
subspace partition types axby of V are covered. �
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helped improve the presentation of the paper.
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