RECONFIGURATION OF SUBSPACE PARTITIONS

FUSUN AKMAN AND PAPA A. SISSOKHO

ABSTRACT. Let q be a fixed prime power and let V(n,q) denote a vector space of dimension n over the Galois field with q elements. A subspace partition (also called "vector space partition") of V(n,q) is a collection of subspaces of V(n,q) with the property that every nonzero element of V(n,q) appears in exactly one of these subspaces.

Given positive integers a, b, n such that $1 \le a < b < n$, we say a subspace partition of V(n,q) has type $a^x b^y$ if it is composed of x subspaces of dimension a and y subspaces of dimension b. Let $c = \gcd(a, b)$. In this paper, we prove that if b divides n, then one can (algebraically) construct every possible subspace partition of V(n,q) of type $a^x b^y$ whenever $y \ge (q^e - 1)/(q^b - 1)$, where $0 \le e < ab/c$ and $n \equiv e \pmod{ab/c}$. Our construction allows us to sequentially reconfigure batches of $(q^a - 1)/(q^c - 1)$ subspaces of dimension b into batches of $(q^b - 1)/(q^c - 1)$ subspaces of dimension a. In particular, this accounts for all numerically allowed subspace partition types $a^x b^y$ of V(n,q) under some additional conditions, e.g., when e = b.

Keywords: Subspace partition; vector space partition; double coset

Mathematics Subject Classification: 51E20; 16D70; 51E14; 05B25

1. INTRODUCTION

Let q be a fixed prime power throughout this article and V(n,q) denote a vector space of dimension n over the Galois field \mathbb{F}_q with q elements. A subspace partition (also called "vector space partition") of V(n,q) is a collection of subspaces of V(n,q) with the property that every nonzero element of V(n,q) appears in exactly one of these subspaces (e.g., see [3, 8, 12]). Subspace partitions can be used to construct combinatorial designs, classical codes, and more recently subspace codes (e.g., [4, 7, 9, 10]). Let a, b, m, n be positive integers. We will use the common notation

$$[n]_q = \frac{q^n - 1}{q - 1}$$

for the Gaussian coefficient counting the 1-dimensional subspaces of V(n,q), which form its finest subspace partition; note that $[1]_q = 1$. We have $(q^m - 1) | (q^n - 1)$, and hence, $[m]_q | [n]_q$, if and only if m | n (the vertical bar denotes "divides in Z.") It follows that for $c = \gcd(a, b)$, we have

$$gcd(q^a - 1, q^b - 1) = q^c - 1 \Longrightarrow gcd([a]_q, [b]_q) = [c]_q.$$

It was shown by André [1] and Segre [19] that V(n,q) admits a subspace partition whose subspaces are of the same dimension a (i.e., a *spread*) if and only if a divides n. However, the problem of finding necessary and sufficient conditions for all possible combinations of a-dimensional and b-dimensional subspaces is still open in general.

For simplicity, we say a subspace partition has type $a^x b^y$ if it is composed of x subspaces of dimension a and y subspaces of dimension b. Note that the following necessary (but in general, not sufficient) condition on the counts of nonzero vectors must be satisfied for the existence of a subspace partition of type $a^x b^y$:

(1)
$$x(q^a - 1) + y(q^b - 1) = q^n - 1.$$

If a = 1 and b > 1, then the problem of finding necessary and sufficient conditions for the existence of a subspace partition of V(n,q) of type $1^x b^y$ is equivalent to finding the maximum size of a *partial b-spread*, i.e., the maximum number of mutually skewed subspaces of dimension b in V(n,q). See Beutelspacher [3], Drake-Freeman [6], and Hong-Patel [11] for earlier results, and for some recent progress in this direction, see Kurz [13, 14] and Năstase-Sissokho [15]. For a = 2 and b = 3, the necessary and sufficient conditions for the existence of a subspace partition of V(n,q) of type $2^x 3^y$ are given in El-Zanati et al. [16].

If $a \mid n$ and $b \mid n$, then it is shown by Blinco et al. [4] that Eq. (1) is also a sufficient condition for a subspace partition of type $a^x b^y$ to exist. For a = 2 and b > 3, the problem of determining the partitions of V(n,q) of type $2^x b^y$ was considered by Seelinger et al. in a series of two papers [17, 18]. In [17], they proved that the existence of subspace partitions of V(n,q) of type $2^x b^y$ for a suitable range of solutions (x, y) implies the existence of subspace partitions of V(n + b, q) of type $2^x b^y$ for almost all solutions (x, y). In their follow-up paper [18], they focused on the case q = 2 and proved the existence of partitions of V(n, 2) of type $2^x b^y$ for almost all solutions (x, y) without any pre-condition.

In the current article, we consider the extension of this case where the smaller dimension a is arbitrary but $b \mid n$. Under this hypothesis, we show that for any nonnegative solution (x, y) of Eq. (1) where y is large enough, we can construct a subspace partition of V(n,q) of type $a^x b^y$. More precisely, we prove the following theorem.

Theorem 1. Let a, b, n be fixed positive integers such that $b > a, n \ge ab/\gcd(a, b)$, and b divides n. Let d be the largest common multiple of a and b such that $d \le n$. For convenience, set $c = \gcd(a, b)$, e = n - d, and s = e/b. Then

(i) There is a subspace partition of V(n,q) of each type

$$a^{i[b]_q/[c]_q} b^{[n]_q/[b]_q-i[a]_q/[c]_q}$$

for all i such that

$$0 \le i \le \frac{q^e[d]_q[c]_q}{[a]_q[b]_q}.$$

Thus, this accounts for all subspace partitions of V(n,q) of type $a^x b^y$ with $y \ge [e]_q/[b]_q$. (ii) Moreover, if $[s]_{q^b} < [a/c]_{q^c}$, e.g., when s = 1 and e = b, then all possible subspace partition types $a^x b^y$ of V are covered by this list.

Remark 1. (1) If c = 1, then there is a subspace partition of V(n,q) of each type

 $a^{i[b]_q} b^{[n]_q/[b]_q-i[a]_q}$ for all *i* such that $0 \le i \le \frac{q^e[d]_q}{[a]_q[b]_q}$.

(2) If $y < [e]_q/[b]_q$, then our results are limited by fact that we do not have necessary and sufficient conditions for the existence of subspace partitions of V(e,q) type $a^x b^y$ when $e < ab/\gcd(a,b)$.

Example 2. Let a = 6 and b = 15 so that $c = \gcd(15, 6) = 3$. Let n = d + e, with d = 30t for some positive integer t, and e = 15. Since a and b both divide d, and s = 1, it follows from Theorem 1 that for any prime power q, there are subspace partitions of V(30t + 15, q) containing $x_i = i[15]_q/[3]_q$ subspaces of dimension 6 and $y_i = [30t+15]_q/[15]_q-i[6]_q/[3]_q$ subspaces of dimension 15, where $0 \le i \le q^{15}[30t]_q[3]_q/[6]_q[15]_q$. Moreover, this accounts for all possible subspace partitions of V(30t + 15, q) with subspaces of dimension 6 and 15.

Our approach combines the methods in [17, 18] with the properties of double cosets¹. This is similar to the method of switching reguli in finite geometry. In particular, given a direct sum

¹These double coset properties are implicit [4, Lemma 2.1], but we use them in a more extensive and explicit way here.

decomposition of $V(n,q) = U \oplus W$, where $U, W \neq \{\mathbf{0}\}$, b divides dim U, and both a and b divide dim W, we use an imposed field structure on W to find ways of partitioning the set U + W into all possible combinations of a-dimensional and b-dimensional subspaces. If S, S' are subsets of a field $W = \mathbb{F}_{q^d}$ and ω is an element of W, then we will denote by S+S' the subset $\{\sigma+\sigma': \sigma \in S, \sigma' \in S'\}$, by SS' the subset $\{\sigma\sigma': \sigma \in S, \sigma' \in S'\}$, by ωS the subset $\{\omega\sigma: \sigma \in S\}$, and by S* the subset $\{\sigma \in S: \sigma \neq \mathbf{0}\}$ of W.

In order to properly manage the various combinations of a- and b-subspaces mentioned above, we use the set partition of the multiplicative group W^* into double cosets relative to its subgroups Γ^* and Δ^* , where Γ and Δ are the unique subfields of W of orders q^a and q^b , and hence, a-dimensional and b-dimensional subspaces of W over \mathbb{F}_q , respectively. The existence of such subfields of \mathbb{F}_{q^d} is due to the following well-known characterization.

Lemma 3. Let a, b, d be positive integers.

(i) Let Γ be an a-dimensional subspace of $W = \mathbb{F}_q^d$. Then W can be simultaneously identified with the field \mathbb{F}_{q^d} and Γ with the unique subfield of \mathbb{F}_{q^d} of order q^a if and only if $a \mid d$. In this case, we write $W \simeq \mathbb{F}_{q^d}$ and $\Gamma \simeq \mathbb{F}_{q^a}$.

(ii) The intersection of the unique subfields of \mathbb{F}_{q^d} of orders q^a and q^b (for a, b dividing d) is a subfield of all three, i.e., the unique one of order $q^{\operatorname{gcd}(a,b)}$.

(iii) If $a \mid d$, then \mathbb{F}_{q^a} is an \mathbb{F}_q -subspace of \mathbb{F}_{q^d} of dimension a.

To avoid the extra calculations due to a possible non-unity greatest common divisor of subspace dimensions, we state a general conversion principle:

Lemma 4. Let a, a_1, \ldots, a_r , c, n be positive integers and x_1, \ldots, x_r be nonnegative integers. Then the following are true:

(i) If $c \mid n$, then $V(n/c, q^c) \simeq \mathbb{F}_{q^{c(n/c)}}$ can be identified with $V(n, q) \simeq \mathbb{F}_{q^n}$, where V(n, q) has the same underlying set as $V(n/c, q^c)$, the same vector addition, and the same multiplication restricted to scalars from the field $\mathbb{F}_q \subseteq \mathbb{F}_{q^c}$.

(ii) If $c \mid a$ and $a \mid n$, then every (a/c)-spread of $V(n/c, q^c)$ has cardinality

$$\frac{[n/c]_{q^c}}{[a/c]_{q^c}} = \frac{[n]_q}{[a]_q}$$

In particular, the number of subspaces of $V(n/c, q^c)$ of dimension 1 = c/c is

$$[n/c]_{q^c} = \frac{[n]_q}{[c]_q}.$$

(iii) If $c \mid a_1, \ldots, c \mid a_r, c \mid n$, and $V(n/c, q^c)$ has a subspace partition of type

$$a_1/c)^{x_1}\cdots(a_r/c)^{x_r},$$

then V(n,q) has a subspace partition of type

 $a_1^{x_1}\cdots a_r^{x_r}$.

We may therefore, without loss of generality, assume that the subspace dimensions a and b in our partitions are relatively prime where convenient. All vector spaces are understood to be over the generic field \mathbb{F}_q (unless otherwise stated), which will in turn be identified with the unique 1-dimensional subfield if the vector space has been given a field structure.

2. Cosets and Double Cosets: Reconfiguration of Partitions of W

The next lemma is essentially due to Beutelspacher [3], and independently, to Bu [5]. It gives a construction of an *a*-spread of V(q, d) for a divisor *a* of *d* via cosets of $\mathbb{F}_{q^a}^*$ in $\mathbb{F}_{q^d}^*$.

Lemma 5. Let a and d be positive integers such that $a \mid d$. Let $W = \mathbb{F}_q^d$ with a field structure, so that $W \simeq \mathbb{F}_{q^d}$, and Γ be the unique a-dimensional subspace of W that corresponds to the subfield of \mathbb{F}_{q^d} of order q^a .

(i) If $\omega \in W^*$, then $\omega \Gamma$ is a linear a-dimensional subspace of W.

(ii) If $\omega_1\Gamma^*, \ldots, \omega_r\Gamma^*$ are the distinct cosets of Γ^* in the multiplicative subgroup W^* of W, where $r = |W^*|/|\Gamma^*| = [d]_q/[a]_q$, then the a-subspaces $\omega_1\Gamma, \ldots, \omega_r\Gamma$ form a subspace partition of W.

Note that the second part of Lemma 5 follows directly from Lemma 4 and the fact that all 1-dimensional subspaces of $V(d/a, q^a)$ form a spread; the $[d]_q/[a]_q$ elements ω_k are simply representatives of such subspaces.

We will now move to the next level and study the subspace partitions with two distinct dimensions a and b. Let us review the following properties of double cosets of two special subgroups of the multiplicative group of a finite field.

Lemma 6. Let a, b, c, d be positive integers such that $c = gcd(a, b), a \mid d$, and $b \mid d$. Moreover, let $W = \mathbb{F}_{q^d}$ and Γ, Δ be the unique subfields of W of orders q^a and q^b respectively. Then $\Gamma \cap \Delta$ is the unique subfield of W of order q^c , containing the scalar field \mathbb{F}_q . The following properties hold: (i) There are

$$m = \frac{|W^*| |\Gamma^* \cap \Delta^*|}{|\Gamma^*| |\Delta^*|} = \frac{[d]_q[c]_q}{[a]_q[b]_q}$$

distinct double (Γ^*, Δ^*) -cosets in W^* , whose representatives will be denoted by $\omega_1, \ldots, \omega_m$:

$$\Gamma^*\omega_1\Delta^*,\ldots,\Gamma^*\omega_m\Delta^*.$$

Every double coset $\Gamma^* \omega_k \Delta^*$ contains

$$\frac{|\Gamma^*| |\Delta^*|}{|\Gamma^* \cap \Delta^*|} = \frac{(q^a - 1)(q^b - 1)}{(q^c - 1)}$$

elements of W^* .

(ii) For each k with $1 \leq k \leq m$, the double coset $\Gamma^* \omega_k \Delta^*$ is the disjoint union of $[a]_q/[c]_q$ left cosets of Δ^* . The elements $\gamma_i \in \Gamma^*$ below can be chosen freely as coset representatives of $\mathbb{F}_{q^c} = \Gamma^* \cap \Delta^*$ in Γ^* :

$$\Gamma^* \omega_k \Delta^* = \bigsqcup_{i=1}^{\lfloor a \rfloor_q / \lfloor c \rfloor_q} (\gamma_i \omega_k) \, \Delta^*.$$

(iii) For each k with $1 \le k \le m$, the double coset $\Gamma^* \omega_k \Delta^*$ is the disjoint union of $[b]_q/[c]_q$ right cosets of Γ^* . The elements $\delta_j \in \Delta^*$ below (same for all k) can be chosen freely as coset representatives of $\mathbb{F}_{q^c} = \Gamma^* \cap \Delta^*$ in Δ^* :

$$\Gamma^* \omega_k \Delta^* = \bigsqcup_{j=1}^{[b]_q/[c]_q} \Gamma^* \left(\omega_k \delta_j \right).$$

(iv) With notation as above, the $[d]_q/[c]_q$ elements $\gamma_i \omega_k \delta_j$ are distinct for $1 \leq i \leq [a]_q/[c]_q$, $1 \leq j \leq [b]_q/[c]_q$, and $1 \leq k \leq m$ and form representatives of a c-spread of W of the form $\{\gamma_i \omega_k \delta_j \mathbb{F}_{q^c}\}$.

Proof. (i) Since W^* is abelian, all subgroups of W^* are normal, and the distinction between left and right cosets is for notational purposes only. In particular, the set $\Gamma^*\Delta^*$ is a subgroup of W^* . From the formula for the cardinality of the product of two subgroups of a finite group, we obtain

$$|\Gamma^* \Delta^*| = \frac{|\Gamma^*| |\Delta^*|}{|\Gamma^* \cap \Delta^*|} = \frac{(q^a - 1)(q^b - 1)}{(q^c - 1)}.$$

Now, each double coset $\Gamma^* \omega_k \Delta^*$ is a left coset $\omega_k (\Gamma^* \Delta^*)$ of the subgroup $\Gamma^* \Delta^*$ and has the same cardinality as $\Gamma^* \Delta^*$, computed above. Therefore, the $q^d - 1$ elements of W^* are partitioned into

$$m = \frac{|W^*|}{|\Gamma^*\Delta^*|} = \frac{(q^d - 1)(q^c - 1)}{(q^a - 1)(q^b - 1)} = \frac{[d]_q[c]_q}{[a]_q[b]_q}$$

double cosets. (*ii*) We write

$$\Gamma^*\omega_k\Delta^* = \bigcup_{\gamma\in\Gamma^*} (\gamma\omega_k)\Delta^*,$$

where any two left cosets of Δ^* in W^* are either equal or disjoint. To compute the number of disjoint cosets in this union, we divide the total number of elements of $\Gamma^* \omega_k \Delta^*$ by $|\Delta^*|$ (see part (i)):

$$\frac{(q^a - 1)(q^b - 1)}{(q^c - 1)(q^b - 1)} = \frac{[a]_q}{[c]_q}.$$

Therefore, we can choose elements $\gamma_1, \ldots, \gamma_{[a]_q/[c]_q} \in \Gamma^*$ such that $\gamma_1 \omega_k, \ldots, \gamma_{[a]_q/[c]_q} \omega_k$ are distinct coset representatives of Δ^* in W^* . Moreover, we have

$$\gamma_i \omega_k \Delta^* = \gamma_{i'} \omega_k \Delta^* \Longleftrightarrow \gamma_i \Delta^* = \gamma_{i'} \Delta^* \Longleftrightarrow \gamma_i \gamma_{i'}^{-1} \in \Gamma^* \cap \Delta^* = \mathbb{F}_{q^c}.$$

As a result, it suffices to fix a complete set $\gamma_1, \ldots, \gamma_{[a]_q/[c]_q}$ of coset representatives of \mathbb{F}_{q^c} in Γ^* regardless of the value of k.

(iii) Similar to the proof of part (ii).

(*iv*) If $(i, j, k) \neq (i', j', k')$, then at least one of the following must be true for the elements $\gamma_i \omega_k \delta_j$ and $\gamma_{i'} \omega_{k'} \delta_{j'}$ of W^* : they are (a) in distinct double (Γ^*, Δ^*) -cosets; or (b) in distinct left cosets of Δ^* ; or (c) in distinct right cosets of Γ^* . Hence, such elements cannot be equal. In addition, we observe that there are

$$\frac{[a]_q}{[c]_q} \frac{[d]_q[c]_q}{[a]_q[b]_q} \frac{[b]_q}{[c]_q} = \frac{[d]_q}{[c]_q} = [W^* \colon \mathbb{F}_{q^c}^*]$$

of them, and

$$\begin{array}{l} \gamma_{i}\omega_{k}\delta_{j}\mathbb{F}_{q^{c}} = \gamma_{i'}\omega_{k'}\delta_{j'}\mathbb{F}_{q^{c}} \\ \Longrightarrow \quad \gamma_{i}\omega_{k}\delta_{j} = \gamma_{i'}\omega_{k'}\underbrace{\delta_{j'}\lambda}_{\in\Delta^{*}} \in \Gamma^{*}\omega_{k}\Delta^{*} \cap \Gamma^{*}\omega_{k'}\Delta^{*}, \ \lambda \in \mathbb{F}_{q^{c}} \\ \Longrightarrow \quad k = k' \text{ by part } (i), \text{ and } \gamma_{i}\gamma_{i'}^{-1} = \delta_{j}^{-1}\delta_{j'}\lambda \in \Gamma^{*} \cap \Delta^{*} = \mathbb{F}_{q^{c}} \\ \Longrightarrow \quad i = i' \text{ and } j = j' \text{ by parts } (ii) \text{ and } (iii). \quad \Box \end{array}$$

We may now assert that there are subspace partitions of W of all types $a^x b^y$ that are allowed by the condition in Eq. (1), that is, $x(q^a - 1) + y(q^b - 1) = q^d - 1$. Therefore, our statement recovers a result of Blinco et al. [4]

Lemma 7. Let a, b, c, d be positive integers such that $c = \gcd(a, b), a \mid d$, and $b \mid d$. Then the collection of $m = [d]_q[c]_q/([a]_q[b]_q)$ subsets $\Gamma \omega_k \Delta$ of V(d,q) have pairwise zero intersection. Each set $\Gamma \omega_k \Delta$ in this collection is simultaneously the union of subspaces $(\gamma_i \omega_k) \Delta$ that form a partial b-spread of V(d,q) of cardinality $[a]_q/[c]_q$ and the union of subspaces $\Gamma(\omega_k \delta_j)$ that form a partial a-spread of cardinality $[b]_q/[c]_q$. As a result, there exist subspace partitions of V(d,q) of all types

$$a^{i[b]_q/[c]_q} b^{[d]_q/[b]_q-i[a]_q/[c]_q},$$

with $0 \leq i \leq m$.

Proof. See Lemma 6 and Lemma 5. Clearly, all nonnegative solutions (x, y) of the Diophantine equation $[a]_q x + [b]_q y = [d]_q$ are represented by the listed subspace partitions of types $a^x b^y$. \Box

FUSUN AKMAN AND PAPA A. SISSOKHO

3. Reconfiguring the Transversal Subspaces of $U \oplus W$

In this section, we assume that a and b are relatively prime. We arrange the existing notation under this convention in Table 1. We now describe the construction depicted in Figure 1.

Object	Description	Size/range				
W	\mathbb{F}_q -space with field structure	$\dim W = d > 0$				
Г	subfield of W	$\dim \Gamma = a, \ a \mid d$				
Δ	subfield of W	$\dim \Delta = b, \ b \mid d$				
γ_i	\mathbb{F}_q^* -coset rep in Γ^* , $\gamma_1 = 1$	$1 \le i \le [a]_q$				
δ_j	\mathbb{F}_q^* -coset rep in $\Delta^*, \delta_1 = 1$	$1 \le j \le [b]_q$				
ω_k	double $(\tilde{\Gamma}^*, \Delta^*)$ -coset rep in $W^*, \omega_1 = 1$	$1 \le k \le m = [d]_q / ([a]_q [b]_q)$				
$\gamma_i \omega_k \delta_j$	\mathbb{F}_q^* -coset rep in W^*	$[d]_q$				
$\omega_k \delta_j$	Γ^* -coset rep in W^*	$[d]_q/[a]_q$				
$\gamma_i \omega_k$	Δ^* -coset rep in W^*	$[d]_q/[b]_q$				

TABLE 1 .	Notation	for	W	when	gcd([a, b]) =	1
-------------	----------	-----	---	------	------	--------	-----	---

FIGURE 1. Configuration of the Construction

- **Construction 8.** (1) For positive integers a, b, d, e such that $a < b, \gcd(a, b) = 1, b | e, a | d, and b | d, consider two vector spaces U and W over <math>\mathbb{F}_q$ of dimensions e and d respectively. We shall describe constructions of subspace partitions of $V = U \oplus W$ consisting of a- and b-subspaces only. We have $n \stackrel{\text{def}}{=} \dim V = e + d$, is divisible by b but not necessarily by a.
 - (2) We impose a field structure on W and let Γ , Δ be the unique subfields of orders q^a and q^b respectively, intersecting at the subfield isomorphic to the scalar field \mathbb{F}_q . Choose elements $\gamma_i \in \Gamma^*$, $\delta_j \in \Delta^*$, and $\omega_k \in W^*$ as in Lemma 6, with $1 \leq i \leq [a]_q$, $1 \leq j \leq [b]_q$, and $1 \leq k \leq m = [d]_q/([a]_q[b]_q)$. Without loss of generality, let $\gamma_1 = \delta_1 = \omega_1 = 1 \in W$.
 - (3) We also endow U with a field structure. Let B be its unique subfield of order q^b and $v_1, \ldots, v_{[e]_q/[b]_q}$ be a set of B^{*}-coset representatives in U^{*}. By Lemma 5, the b-subspaces

 $v_1B, \ldots, v_{[e]_q/[b]_q}B$ form a b-spread of U. Without loss of generality, let $v_1 = 1 \in U$. We also fix an a-dimensional subspace A of B such that \mathbb{F}_q is contained in A.

(4) We now identify various subspaces and subfields. Let $g: \Delta \to B$ be a field isomorphism, which necessarily satisfies $g(\delta_1) = g(1) = 1$; set $\beta_j = g(\delta_j)$ for $1 \le j \le [b]_q$. Without loss of generality, assume that $\beta_1, \ldots, \beta_{[a]_q} \in A$, and that the first a of them, β_1, \ldots, β_a , form a basis of A. We define an \mathbb{F}_q -linear isomorphism $f: \Gamma \to A$ by setting $f(\gamma_i) \stackrel{\text{def}}{=} \beta_i = g(\delta_i)$ for $1 \le i \le a$. Finally, let $\alpha_i \stackrel{\text{def}}{=} \beta_i$ for $1 \le i \le [a]_q$.

We display the new information from Construction 8 in Table 2.

Object	Description	Size/range			
U	\mathbb{F}_q -space with field structure	$\dim U = e > 0$			
W	\mathbb{F}_q -space with field structure	$\dim W = d > 0$			
V	$U \oplus W, \ \mathbb{F}_q$ -space	$\dim V = n = e + d$			
В	subfield of U	$\dim B = b, \ b \mid e, b \mid d$			
A	subspace of B containing \mathbb{F}_q	$\dim A = a < b, \ a \mid d$			
f	linear isomorphism	$f\colon \Gamma \to A$			
g	field isomorphism	$g \colon \Delta \to B$			
v_ℓ	B^* -coset reps in U^* , $v_1 = 1$	$1 \le \ell \le [e]_q / [b]_q$			
β_j	$g(\delta_j), \ \mathbb{F}_q^*$ -coset reps in $B^*, \ \beta_1 = 1$	$1 \le j \le [b]_q$			
α_i	$\beta_i = f(\gamma_i) = g(\delta_i)$, reps of 1-D subspaces in $A, \alpha_1 = 1$	$1 \le i \le [a]_q$			
$v_\ell \beta_j$	\mathbb{F}_q^* -coset reps in U^*	$[e]_q$			

TABLE 2. Notation	for	V =	$U \oplus$	W	when	gcd([a, b]) =	= 1	L
-------------------	-----	-----	------------	---	------	------	--------	-----	-----	---

We will now construct a partial *a*-spread of $V = U \oplus W$ whose subspaces have the property that all nonzero vectors have nonzero projections onto U and W: we will call any such subspace *transversal*. Hence, these subspaces have pairwise trivial intersection with those in each of the subspace partitions of W that we have described in Lemma 7.

Lemma 9. Let the notation be as in Tables 1 and 2, with gcd(a,b) = 1. For each triple (v, j, k) with $v \in U^*$, $1 \le j \le [b]_q$, and $1 \le k \le [d]_q/([a]_q[b]_q)$, we define a map

$$\phi_j^{(k,\upsilon)} \stackrel{\text{def}}{=} \upsilon \cdot f + \omega_k \delta_j \cdot i d_{\Gamma} \colon \Gamma \to U \oplus W.$$

Then $\phi_j^{(k,v)}$ is \mathbb{F}_q -linear and injective. Hence, the subspaces

$$A_j^{(k,\upsilon)} \stackrel{\text{def}}{=} Im \,\phi_j^{(k,\upsilon)} = \{ \upsilon f(\gamma) + \gamma \omega_k \delta_j \colon \gamma \in \Gamma \}$$

of $U \oplus W$ are a-dimensional over \mathbb{F}_q . Moreover, we have $A_j^{(k,v)} = A_{j'}^{(k',v')}$ if (v, j, k) = (v', j', k')and $A_j^{(k,v)} \cap A_{j'}^{(k',v')} = \{\mathbf{0}\}$ otherwise, giving rise to a partial a-spread of $U \oplus W$ with $(q^e - 1)[d]_q/[a]_q$ transversal subspaces.

Proof. Linearity is clear. If $vf(\gamma) + \gamma \omega_k \delta_j = 0$, then we must have $f(\gamma) = 0$ since $v \neq 0$, and $\gamma = 0$ since f is injective. This shows that $\phi_j^{(k,v)}$ is injective.

Assume that for some $v, v' \in U^*, j, j' \in \{1, \ldots, [b]_q\}, k, k' \in \{1, \ldots, [d]_q/([a]_q[b]_q)\}$, and $\gamma, \gamma' \in \Gamma^*$, we have

$$\upsilon f(\gamma) + \gamma \omega_k \delta_j = \upsilon' f(\gamma') + \gamma' \omega_{k'} \delta_{j'}.$$

By the construction of coset representatives of Γ^* in W^* (see Table 1), we must have j = j' and k = k'. Thus, from the above, we first obtain $\gamma = \gamma'$ and $vf(\gamma) = v'f(\gamma')$, from which we may conclude v = v'.

Remark 10. This construction is optimal in the sense that if a were to divide e as well, then together with a-spreads of U and W, we would obtain a total of

$$(q^e - 1)\frac{[d]_q}{[a]_q} + \frac{[e]_q}{[a]_q} + \frac{[d]_q}{[a]_q} = \frac{q^e[d]_q + [e]_q}{[a]_q} = \frac{[n]_q}{[a]_q}$$

subspaces, forming an a-spread of $V = U \oplus W$.

Here is a similar construction of transversal b-subspaces of $U \oplus W$.

Lemma 11. Let the notation be as in Tables 1 and 2, with gcd(a, b) = 1. For each triple (ν, i, k) with $\nu \in U^*$, $1 \le i \le [a]_q$, and $1 \le k \le [d]_q/([a]_q[b]_q)$, we define a map

$$\psi_i^{(k,\nu)} \stackrel{\text{def}}{=} \nu \cdot g + \gamma_i \omega_k \cdot id_\Delta \colon \Delta \to U \oplus W.$$

The maps $\psi_i^{(k,\nu)}$ are \mathbb{F}_q -linear and injective. The subspaces

$$B_i^{(k,\nu)} \stackrel{\text{def}}{=} \operatorname{Im} \psi_i^{(k,\nu)} = \{ \nu g(\delta) + \gamma_i \omega_k \delta \colon \delta \in \Delta \}$$

of $U \oplus W$ are b-dimensional over \mathbb{F}_q . Moreover, we have $B_i^{(k,\nu)} = B_{i'}^{(k',\nu')}$ if $(\nu, i, k) = (\nu', i', k')$ and $B_i^{(k,\nu)} \cap B_{i'}^{(k',\nu')} = \{\mathbf{0}\}$ otherwise, giving rise to a partial b-spread of $U \oplus W$ with $(q^e - 1)[d]_q/[b]_q$ transversal subspaces.

Proof. The proof is similar to that of Lemma 9, with Γ^* -coset representatives in W^* replaced by Δ^* -coset representatives.

Remark 12. Since b divides both d and e, together with b-spreads of U and W, we obtain a total of

$$(q^e - 1)\frac{[d]_q}{[b]_q} + \frac{[e]_q}{[b]_q} + \frac{[d]_q}{[b]_q} = \frac{q^e[d]_q + [e]_q}{[b]_q} = \frac{[n]_q}{[b]_q}$$

subspaces, forming a b-spread of $V = U \oplus W$.

Remark 13. Further partitioning the elements of U^* into B^* -cosets $\nu_{\ell}B^*$ (see Table 2), we refine our construction in Lemma 9 to the a-subspaces

$$A_j^{(k,\ell,\beta)} \stackrel{\text{def}}{=} \{ \upsilon_\ell \beta \beta_j f(\gamma) + \gamma \omega_k \delta_j \colon \gamma \in \Gamma \}$$

for (β, j, k, ℓ) with $\beta \in B^*$, $1 \leq j \leq [b]_q$, $1 \leq k \leq [d]_q/([a]_q[b]_q)$, and $1 \leq \ell \leq [e]_q/[b]_q$. This is still in full generality as every B^* -coset remains invariant under multiplication by the fixed element β_j of B^* (resp., by $\alpha_i = \beta_i$ below.) Similarly, we define b-subspaces that are more nuanced with respect to Lemma 11 via

$$B_i^{(k,\ell,\beta)} \stackrel{\text{def}}{=} \{ \upsilon_\ell \beta \alpha_i g(\delta) + \gamma_i \omega_k \delta \colon \delta \in \Delta \}$$

for (β, i, k, ℓ) with $\beta \in B^*$, $1 \le i \le [a]_q$, $1 \le k \le [d]_q / ([a]_q [b]_q)$, and $1 \le \ell \le [e]_q / [b]_q$.

We are ready to describe the main reconfiguration result for two distinct subspace dimensions a and b.

Proposition 14. Let the notation be as in Table 1, Table 2, and Remark 13, where gcd(a, b) = 1. Then for all fixed (β, k, ℓ) with $\beta \in B^*$, $1 \le k \le [d]_q/([a]_q[b]_q)$, and $1 \le \ell \le [e]_q/[b]_q$, we have

$$\bigsqcup_{j=1}^{[b]_q} \left(A_j^{(k,\ell,\beta)} \right)^* = \bigsqcup_{i=1}^{[a]_q} \left(B_i^{(k,\ell,\beta)} \right)^*.$$

There are

$$(q^e - 1) \, \frac{[d]_q}{[a]_q[b]_q}$$

such possible reconfigurations as β , k, and ℓ vary.

Proof. For later use, first recall from Construction 8, part (4), that $\alpha_i \stackrel{\text{def}}{=} \beta_i$ for $1 \le i \le [a]_q$. Let

$$x = \upsilon_{\ell}\beta\beta_j f(\gamma) + \gamma\omega_k\delta_j \in \left(A_j^{(k,\ell,\beta)}\right)^*$$

The element $\gamma \in \Gamma^*$ has a unique representation $\gamma = \lambda \gamma_i$ for some $\lambda \in \mathbb{F}_q^*$ and $1 \leq i \leq [a]_q$. Hence, we have

$$\lambda^{-1}x = \upsilon_{\ell}\beta\beta_j f(\gamma_i) + \gamma_i\omega_k\delta_j = \upsilon_{\ell}\beta\alpha_i g(\delta_j) + \gamma_i\omega_k\delta_j \in \left(B_i^{(k,\ell,\beta)}\right)^*.$$

Conversely, if

$$y = v_{\ell} \beta \alpha_i g(\delta) + \gamma_i \omega_k \delta \in \left(B_i^{(k,\ell,\beta)} \right)^*,$$

then the element $\delta \in \Delta^*$ has a unique representation as $\delta = \lambda \delta_j$ for some $\lambda \in \mathbb{F}_q^*$ and $1 \leq j \leq [b]_q$. We have

$$\lambda^{-1}y = v_{\ell}\beta\alpha_{i}g(\delta_{j}) + \gamma_{i}\omega_{k}\delta_{j} = v_{\ell}\beta\beta_{j}f(\gamma_{i}) + \gamma_{i}\omega_{k}\delta_{j} \in \left(A_{j}^{(k,\ell,\beta)}\right)^{*}.$$

Let us summarize our findings in this section.

Proposition 15. Let a, b, d, e, n be positive integers such that a < b, gcd(a, b) = 1, $a \mid d, b \mid d$, $b \mid e$, and n = e + d (see Tables 1 and 2 for further notation.) If U is an \mathbb{F}_q -space of dimension e and W is an \mathbb{F}_q -space of dimension d, then there exist $(q^e - 1)[d]_q/([a]_q[b]_q)$ disjoint subsets of the set

$$(U \oplus W)^* \setminus (U^* \sqcup W^*),$$

each of which can be set-partitioned both into the nonzero vectors of $[b]_q$ subspaces of dimension a and into those of $[a]_q$ subspaces of dimension b.

Remark 16. In order to update the last result to the case c = gcd(a, b), we divide the dimensions of all subspaces under consideration by c and consider them subspaces over the field \mathbb{F}_{q^c} according to Lemma 4. Over \mathbb{F}_{q^c} , we have

$$\begin{aligned} |U^*| &= (q^c)^{e/c} - 1 = q^e - 1 \quad (number \ of \ nonzero \ elements \ of \ U(e/c, q^c)) \ and \\ \frac{[d/c]_q}{[a/c]_q [b/c]_q} &= \frac{[d]_q/[c]_q}{[a]_q [b]_q/[c]_q^2} = \frac{[d]_q [c]_q}{[a]_q [b]_q} \quad (number \ of \ double \ cosets \ in \ W(d/c, q^c).) \end{aligned}$$

Then there are

$$(q^e - 1) \frac{[d]_q[c]_q}{[a]_q[b]_q}$$

disjoint subsets in Proposition 15, each of which can give us a partial spread of type $a^{[b]_q/[c]_q}$ or a partial spread of type $b^{[a]_q/[c]_q}$ over \mathbb{F}_q .

4. Proof of the Main Theorem

In this section, we prove our main theorem.

Proof of Theorem 1. The various partitions of the types listed can be directly constructed using Lemma 7 and Remark 16 following Proposition 15. Nonnegative solutions of the Diophantine equation Eq. (1) exist, as $[b]_q \mid [n]_q$, and are given by

(2)
$$(x_i, y_i) = \left(0, \frac{[n]_q}{[b]_q}\right) + i \left(\frac{[b]_q}{[c]_q}, -\frac{[a]_q}{[c]_q}\right), \quad 0 \le i \le \left\lfloor\frac{[n]_q[c]_q}{[a]_q[b]_q}\right\rfloor.$$

By Lemma 7, we are able to reconfigure between zero and $m = [d]_q[c]_q/([a]_q[b]_q)$ batches of *a*subspaces of *W* (where each batch contains $[b]_q/[c]_q$ of them) from *b*-dimensional subspaces as expected. Next, Remark 16 shows us that there are up to $(q^e - 1)m$ additional batches (again, of $[b]_q/[c]_q$ subspaces of dimension *a* each) available by reconfiguration from some of the transversal *b*-subspaces. The total number of times we can convert *b*'s into *a*'s (the upper limit of *i* in the statement of this theorem) is then $M = q^e m = q^e [d]_q [c]_q/([a]_q [b]_q)$.

For the second part of the theorem, we obtain $y_{M+1} < 0$ in Eq. (2) if and only if the condition $[s]_{q^b} < [a/c]_{q^s}$ is satisfied. Thus,

$$y_{M+1} = \frac{[sb+d]_q}{[b]_q} - \left(\frac{q^{sb}[d]_q[c]_q}{[a]_q[b]_q} + 1\right) \frac{[a]_q}{[c]_q}$$
$$= \frac{[sb+d]_q - q^{sb}[d]_q}{[b]_q} - \frac{[a]_q}{[c]_q}$$
$$= \frac{[sb]_q}{[b]_q} - \frac{[a]_q}{[c]_q}$$
$$= [s]_{q^b} - [a/c]_{q^c}.$$

If a divides b, then V(n,q) clearly admits a subspace partition of type $a^{[n]_q/[a]_q}$, i.e., an a-spread. Thus, when e = b, we have s = 1 and either a divides b or $[s]_{q^b} < [a/c]_{q^c}$. In both cases all possible subspace partition types $a^x b^y$ of V are covered.

Acknowledgement: We thank the anonymous referees for valuable and detailed suggestions which helped improve the presentation of the paper.

References

- J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z. 60 (1954), 156–186.
- [2] A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Z. 145 (1975), 211–229.
- [3] A. Beutelspacher, Partitions of finite vector spaces: an application of the Frobenius number in geometry, Arch. Math. 31 (1978), 202–208.
- [4] A. Blinco, S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, and C. Vanden Eynden, On vector space partitions and uniformly resolvable designs, *Des. Codes Cryptogr.* 48 (2008), 69–77.
- [5] T. Bu, Partitions of a vector space, Discrete Math. **31** (1980), 79–83.
- [6] D. Drake and J. Freeman, Partial *t*-spreads and group constructible (s, r, μ) -nets, J. Geom. 13 (1979), 211–216.
- [7] E. Gorla and A. Ravagnani, Partial spreads in random network coding, *Finite Fields Appl.* 26 (2014), 104–115.
- [8] O. Heden, A survey of the different types of vector space partitions, Discrete Math. Algorithms Appl. 4 (2012), 1–14.
- M. Herzog and J. Schönheim, Linear and nonlinear single error-correcting perfect mixed codes, *Informat.* and Control 18 (1971), 364–368.
- [10] T. Honold, M. Kiermaier, and S. Kurz, Partial spreads and vector space partitions, in *Network Coding and Subspace Designs*, Springer (2018), 131–170.
- [11] S. Hong and A. Patel, A general class of maximal codes for computer applications, *IEEE Trans. Comput.* C-21 (1972), 1322–1331.
- [12] A. Khare, Vector spaces as unions of proper subspaces, *Linear Algebra Appl.* **431** (2009), 1681–1686.
- [13] S. Kurz, Improved upper bounds for partial spreads, Des. Codes Cryptogr., 85(1) (2017), 97–106.
- [14] S. Kurz. Packing vector spaces into vector spaces, Australas. J. Combin., 68(1) (2017), 122–130.
- [15] E. Năstase and P. Sissokho, The maximum size of a partial spread in a finite projective space, J. Combin. Theory Ser. A 152 (2017), 353–362.

- [16] S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, C. Vanden Eynden, Partitions of finite vector spaces into subspaces, J. Comb. Des. 16(4) (2008), 329–341.
- [17] G. Seelinger, P. Sissokho, L. Spence, C. Vanden Eynden, Partitions of V(n,q) into 2- and s-dimensional subspaces, J. Comb. Des. 18 (2012), 467–482.
- [18] G. Seelinger, P. Sissokho, L. Spence, C. Vanden Eynden, Partitions of finite vector spaces over GF(2) into subspaces of dimensions 2 and s, *Finite Fields Appl.* **18(6)** (2012), 1114–1132.
- [19] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl. 64 (1964), 1–76.

(Fusun Akman and Papa A. Sissokho) MATHEMATICS DEPARTMENT, ILLINOIS STATE UNIVERSITY, NOR-MAL, ILLINOIS 61790, USA

Email address: akmanf@ilstu.edu

Email address, Corresponding author: psissok@ilstu.edu