RECONFIGURATION OF SUBSPACE PARTITIONS

FUSUN AKMAN AND PAPA A. SISSOKHO

Abstract

Let q be a fixed prime power and let $V(n, q)$ denote a vector space of dimension n over the Galois field with q elements. A subspace partition (also called "vector space partition") of $V(n, q)$ is a collection of subspaces of $V(n, q)$ with the property that every nonzero element of $V(n, q)$ appears in exactly one of these subspaces.

Given positive integers a, b, n such that $1 \leq a<b<n$, we say a subspace partition of $V(n, q)$ has type $a^{x} b^{y}$ if it is composed of x subspaces of dimension a and y subspaces of dimension b. Let $c=\operatorname{gcd}(a, b)$. In this paper, we prove that if b divides n, then one can (algebraically) construct every possible subspace partition of $V(n, q)$ of type $a^{x} b^{y}$ whenever $y \geq\left(q^{e}-1\right) /\left(q^{b}-1\right)$, where $0 \leq e<a b / c$ and $n \equiv e(\bmod a b / c)$. Our construction allows us to sequentially reconfigure batches of $\left(q^{a}-1\right) /\left(q^{c}-1\right)$ subspaces of dimension b into batches of $\left(q^{b}-1\right) /\left(q^{c}-1\right)$ subspaces of dimension a. In particular, this accounts for all numerically allowed subspace partition types $a^{x} b^{y}$ of $V(n, q)$ under some additional conditions, e.g., when $e=b$.

Keywords: Subspace partition; vector space partition; double coset
Mathematics Subject Classification: 51E20; 16D70; 51E14; 05B25

1. Introduction

Let q be a fixed prime power throughout this article and $V(n, q)$ denote a vector space of dimension n over the Galois field \mathbb{F}_{q} with q elements. A subspace partition (also called "vector space partition") of $V(n, q)$ is a collection of subspaces of $V(n, q)$ with the property that every nonzero element of $V(n, q)$ appears in exactly one of these subspaces (e.g., see $[3,8,12]$). Subspace partitions can be used to construct combinatorial designs, classical codes, and more recently subspace codes (e.g., $[4,7,9,10]$). Let a, b, m, n be positive integers. We will use the common notation

$$
[n]_{q}=\frac{q^{n}-1}{q-1}
$$

for the Gaussian coefficient counting the 1-dimensional subspaces of $V(n, q)$, which form its finest subspace partition; note that $[1]_{q}=1$. We have $\left(q^{m}-1\right) \mid\left(q^{n}-1\right)$, and hence, $[m]_{q} \mid[n]_{q}$, if and only if $m \mid n$ (the vertical bar denotes "divides in $\mathbb{Z} . "$) It follows that for $c=\operatorname{gcd}(a, b)$, we have

$$
\operatorname{gcd}\left(q^{a}-1, q^{b}-1\right)=q^{c}-1 \Longrightarrow \operatorname{gcd}\left([a]_{q},[b]_{q}\right)=[c]_{q}
$$

It was shown by André [1] and Segre [19] that $V(n, q)$ admits a subspace partition whose subspaces are of the same dimension a (i.e., a spread) if and only if a divides n. However, the problem of finding necessary and sufficient conditions for all possible combinations of a-dimensional and b-dimensional subspaces is still open in general.

For simplicity, we say a subspace partition has type $a^{x} b^{y}$ if it is composed of x subspaces of dimension a and y subspaces of dimension b. Note that the following necessary (but in general, not sufficient) condition on the counts of nonzero vectors must be satisfied for the existence of a subspace partition of type $a^{x} b^{y}$:

$$
\begin{equation*}
x\left(q^{a}-1\right)+y\left(q^{b}-1\right)=q^{n}-1 \tag{1}
\end{equation*}
$$

If $a=1$ and $b>1$, then the problem of finding necessary and sufficient conditions for the existence of a subspace partition of $V(n, q)$ of type $1^{x} b^{y}$ is equivalent to finding the maximum size of a partial b-spread, i.e., the maximum number of mutually skewed subspaces of dimension b in $V(n, q)$. See Beutelspacher [3], Drake-Freeman [6], and Hong-Patel [11] for earlier results, and for some recent progress in this direction, see Kurz [13, 14] and Năstase-Sissokho [15]. For $a=2$ and $b=3$, the necessary and sufficient conditions for the existence of a subspace partition of $V(n, q)$ of type $2^{x} 3^{y}$ are given in El-Zanati et al. [16].

If $a \mid n$ and $b \mid n$, then it is shown by Blinco et al. [4] that Eq. (1) is also a sufficient condition for a subspace partition of type $a^{x} b^{y}$ to exist. For $a=2$ and $b>3$, the problem of determining the partitions of $V(n, q)$ of type $2^{x} b^{y}$ was considered by Seelinger et al. in a series of two papers [17, 18]. In [17], they proved that the existence of subspace partitions of $V(n, q)$ of type $2^{x} b^{y}$ for a suitable range of solutions (x, y) implies the existence of subspace partitions of $V(n+b, q)$ of type $2^{x} b^{y}$ for almost all solutions (x, y). In their follow-up paper [18], they focused on the case $q=2$ and proved the existence of partitions of $V(n, 2)$ of type $2^{x} b^{y}$ for almost all solutions (x, y) without any pre-condition.

In the current article, we consider the extension of this case where the smaller dimension a is arbitrary but $b \mid n$. Under this hypothesis, we show that for any nonnegative solution (x, y) of Eq. (1) where y is large enough, we can construct a subspace partition of $V(n, q)$ of type $a^{x} b^{y}$. More precisely, we prove the following theorem.

Theorem 1. Let a, b, n be fixed positive integers such that $b>a, n \geq a b / \operatorname{gcd}(a, b)$, and b divides n. Let d be the largest common multiple of a and b such that $d \leq n$. For convenience, set $c=\operatorname{gcd}(a, b)$, $e=n-d$, and $s=e / b$. Then
(i) There is a subspace partition of $V(n, q)$ of each type

$$
a^{i[b]_{q} /[c]_{q}} b^{[n]_{q} /[b]_{q}-i[a]_{q} /[c]_{q}}
$$

for all i such that

$$
0 \leq i \leq \frac{q^{e}[d]_{q}[c]_{q}}{[a]_{q}[b]_{q}}
$$

Thus, this accounts for all subspace partitions of $V(n, q)$ of type $a^{x} b^{y}$ with $y \geq[e]_{q} /[b]_{q}$.
(ii) Moreover, if $[s]_{q^{b}}<[a / c]_{q^{c}}$, e.g., when $s=1$ and $e=b$, then all possible subspace partition types $a^{x} b^{y}$ of V are covered by this list.
Remark 1. (1) If $c=1$, then there is a subspace partition of $V(n, q)$ of each type

$$
a^{i[b]_{q}} b^{[n]_{q} /[b]_{q}-i[a]_{q}} \text { for all } i \text { such that } 0 \leq i \leq \frac{q^{e}[d]_{q}}{[a]_{q}[b]_{q}} \text {. }
$$

(2) If $y<[e]_{q} /[b]_{q}$, then our results are limited by fact that we do not have necessary and sufficient conditions for the existence of subspace partitions of $V(e, q)$ type $a^{x} b^{y}$ when $e<$ $a b / \operatorname{gcd}(a, b)$.
Example 2. Let $a=6$ and $b=15$ so that $c=\operatorname{gcd}(15,6)=3$. Let $n=d+e$, with $d=30 t$ for some positive integer t, and $e=15$. Since a and b both divide d, and $s=1$, it follows from Theorem 1 that for any prime power q, there are subspace partitions of $V(30 t+15, q)$ containing $x_{i}=i[15]_{q} /[3]_{q}$ subspaces of dimension 6 and $y_{i}=[30 t+15]_{q} /[15]_{q}-i[6]_{q} /[3]_{q}$ subspaces of dimension 15 , where $0 \leq i \leq q^{15}[30 t]_{q}[3]_{q} /[6]_{q}[15]_{q}$. Moreover, this accounts for all possible subspace partitions of $V(30 t+15, q)$ with subspaces of dimensions 6 and 15 .

Our approach combines the methods in $[17,18]$ with the properties of double cosets ${ }^{1}$. This is similar to the method of switching reguli in finite geometry. In particular, given a direct sum

[^0]decomposition of $V(n, q)=U \oplus W$, where $U, W \neq\{\mathbf{0}\}, b$ divides $\operatorname{dim} U$, and both a and b divide $\operatorname{dim} W$, we use an imposed field structure on W to find ways of partitioning the set $U+W$ into all possible combinations of a-dimensional and b-dimensional subspaces. If S, S^{\prime} are subsets of a field $W=\mathbb{F}_{q^{d}}$ and ω is an element of W, then we will denote by $S+S^{\prime}$ the subset $\left\{\sigma+\sigma^{\prime}: \sigma \in S, \sigma^{\prime} \in S^{\prime}\right\}$, by $S S^{\prime}$ the subset $\left\{\sigma \sigma^{\prime}: \sigma \in S, \sigma^{\prime} \in S^{\prime}\right\}$, by ωS the subset $\{\omega \sigma: \sigma \in S\}$, and by S^{*} the subset $\{\sigma \in S: \sigma \neq \mathbf{0}\}$ of W.

In order to properly manage the various combinations of a - and b-subspaces mentioned above, we use the set partition of the multiplicative group W^{*} into double cosets relative to its subgroups Γ^{*} and Δ^{*}, where Γ and Δ are the unique subfields of W of orders q^{a} and q^{b}, and hence, a-dimensional and b-dimensional subspaces of W over \mathbb{F}_{q}, respectively. The existence of such subfields of $\mathbb{F}_{q^{d}}$ is due to the following well-known characterization.

Lemma 3. Let a, b, d be positive integers.
(i) Let Γ be an a-dimensional subspace of $W=\mathbb{F}_{q}^{d}$. Then W can be simultaneously identified with the field $\mathbb{F}_{q^{d}}$ and Γ with the unique subfield of $\mathbb{F}_{q^{d}}$ of order q^{a} if and only if $a \mid d$. In this case, we write $W \simeq \mathbb{F}_{q^{d}}$ and $\Gamma \simeq \mathbb{F}_{q^{a}}$.
(ii) The intersection of the unique subfields of $\mathbb{F}_{q^{d}}$ of orders q^{a} and q^{b} (for a, b dividing d) is a subfield of all three, i.e., the unique one of order $q^{\operatorname{gcd}(a, b)}$.
(iii) If $a \mid$ d, then $\mathbb{F}_{q^{a}}$ is an $\mathbb{F}_{q^{-}}$-subspace of $\mathbb{F}_{q^{d}}$ of dimension a.

To avoid the extra calculations due to a possible non-unity greatest common divisor of subspace dimensions, we state a general conversion principle:

Lemma 4. Let $a, a_{1}, \ldots, a_{r}, c, n$ be positive integers and x_{1}, \ldots, x_{r} be nonnegative integers. Then the following are true:
(i) If $c \mid n$, then $V\left(n / c, q^{c}\right) \simeq \mathbb{F}_{q^{c(n / c)}}$ can be identified with $V(n, q) \simeq \mathbb{F}_{q^{n}}$, where $V(n, q)$ has the same underlying set as $V\left(n / c, q^{c}\right)$, the same vector addition, and the same multiplication restricted to scalars from the field $\mathbb{F}_{q} \subseteq \mathbb{F}_{q^{c}}$.
(ii) If $c \mid a$ and $a \mid n$, then every (a / c)-spread of $V\left(n / c, q^{c}\right)$ has cardinality

$$
\frac{[n / c]_{q^{c}}}{[a / c]_{q^{c}}}=\frac{[n]_{q}}{[a]_{q}} .
$$

In particular, the number of subspaces of $V\left(n / c, q^{c}\right)$ of dimension $1=c / c$ is

$$
[n / c]_{q^{c}}=\frac{[n]_{q}}{[c]_{q}} .
$$

(iii) If $c\left|a_{1}, \ldots, c\right| a_{r}, c \mid n$, and $V\left(n / c, q^{c}\right)$ has a subspace partition of type

$$
\left(a_{1} / c\right)^{x_{1}} \cdots\left(a_{r} / c\right)^{x_{r}}
$$

then $V(n, q)$ has a subspace partition of type

$$
a_{1}^{x_{1}} \cdots a_{r}^{x_{r}} .
$$

We may therefore, without loss of generality, assume that the subspace dimensions a and b in our partitions are relatively prime where convenient. All vector spaces are understood to be over the generic field \mathbb{F}_{q} (unless otherwise stated), which will in turn be identified with the unique 1-dimensional subfield if the vector space has been given a field structure.

2. Cosets and Double Cosets: Reconfiguration of Partitions of W

The next lemma is essentially due to Beutelspacher [3], and independently, to Bu [5]. It gives a construction of an a-spread of $V(q, d)$ for a divisor a of d via cosets of $\mathbb{F}_{q^{a}}^{*}$ in $\mathbb{F}_{q^{d}}^{*}$.

Lemma 5. Let a and d be positive integers such that $a \mid d$. Let $W=\mathbb{F}_{q}^{d}$ with a field structure, so that $W \simeq \mathbb{F}_{q^{d}}$, and Γ be the unique a-dimensional subspace of W that corresponds to the subfield of $\mathbb{F}_{q^{d}}$ of order q^{a}.
(i) If $\omega \in W^{*}$, then $\omega \Gamma$ is a linear a-dimensional subspace of W.
(ii) If $\omega_{1} \Gamma^{*}, \ldots, \omega_{r} \Gamma^{*}$ are the distinct cosets of Γ^{*} in the multiplicative subgroup W^{*} of W, where $r=\left|W^{*}\right| /\left|\Gamma^{*}\right|=[d]_{q} /[a]_{q}$, then the a-subspaces $\omega_{1} \Gamma, \ldots, \omega_{r} \Gamma$ form a subspace partition of W.

Note that the second part of Lemma 5 follows directly from Lemma 4 and the fact that all 1-dimensional subspaces of $V\left(d / a, q^{a}\right)$ form a spread; the $[d]_{q} /[a]_{q}$ elements ω_{k} are simply representatives of such subspaces.

We will now move to the next level and study the subspace partitions with two distinct dimensions a and b. Let us review the following properties of double cosets of two special subgroups of the multiplicative group of a finite field.

Lemma 6. Let a, b, c, d be positive integers such that $c=\operatorname{gcd}(a, b), a \mid d$, and $b \mid d$. Moreover, let $W=\mathbb{F}_{q^{d}}$ and Γ, Δ be the unique subfields of W of orders q^{a} and q^{b} respectively. Then $\Gamma \cap \Delta$ is the unique subfield of W of order q^{c}, containing the scalar field \mathbb{F}_{q}. The following properties hold:
(i) There are

$$
m=\frac{\left|W^{*}\right|\left|\Gamma^{*} \cap \Delta^{*}\right|}{\left|\Gamma^{*}\right|\left|\Delta^{*}\right|}=\frac{[d]_{q}[c]_{q}}{[a]_{q}[b]_{q}}
$$

distinct double $\left(\Gamma^{*}, \Delta^{*}\right)$-cosets in W^{*}, whose representatives will be denoted by $\omega_{1}, \ldots, \omega_{m}$:

$$
\Gamma^{*} \omega_{1} \Delta^{*}, \ldots, \Gamma^{*} \omega_{m} \Delta^{*}
$$

Every double coset $\Gamma^{*} \omega_{k} \Delta^{*}$ contains

$$
\frac{\left|\Gamma^{*}\right|\left|\Delta^{*}\right|}{\left|\Gamma^{*} \cap \Delta^{*}\right|}=\frac{\left(q^{a}-1\right)\left(q^{b}-1\right)}{\left(q^{c}-1\right)}
$$

elements of W^{*}.
(ii) For each k with $1 \leq k \leq m$, the double coset $\Gamma^{*} \omega_{k} \Delta^{*}$ is the disjoint union of $[a]_{q} /[c]_{q}$ left cosets of Δ^{*}. The elements $\gamma_{i} \in \Gamma^{*}$ below can be chosen freely as coset representatives of $\mathbb{F}_{q^{c}}=\Gamma^{*} \cap \Delta^{*}$ in Γ^{*} :

$$
\Gamma^{*} \omega_{k} \Delta^{*}=\bigsqcup_{i=1}^{[a]_{q} /[c]_{q}}\left(\gamma_{i} \omega_{k}\right) \Delta^{*}
$$

(iii) For each k with $1 \leq k \leq m$, the double $\operatorname{coset} \Gamma^{*} \omega_{k} \Delta^{*}$ is the disjoint union of $[b]_{q} /[c]_{q}$ right cosets of Γ^{*}. The elements $\delta_{j} \in \Delta^{*}$ below (same for all k) can be chosen freely as coset representatives of $\mathbb{F}_{q^{c}}=\Gamma^{*} \cap \Delta^{*}$ in $\Delta^{*}:$

$$
\Gamma^{*} \omega_{k} \Delta^{*}=\bigsqcup_{j=1}^{[b]_{q} /[c]_{q}} \Gamma^{*}\left(\omega_{k} \delta_{j}\right)
$$

(iv) With notation as above, the $[d]_{q} /[c]_{q}$ elements $\gamma_{i} \omega_{k} \delta_{j}$ are distinct for $1 \leq i \leq[a]_{q} /[c]_{q}, 1 \leq$ $j \leq[b]_{q} /[c]_{q}$, and $1 \leq k \leq m$ and form representatives of a c-spread of W of the form $\left\{\gamma_{i} \omega_{k} \delta_{j} \mathbb{F}_{q^{c}}\right\}$.

Proof. (i) Since W^{*} is abelian, all subgroups of W^{*} are normal, and the distinction between left and right cosets is for notational purposes only. In particular, the set $\Gamma^{*} \Delta^{*}$ is a subgroup of W^{*}. From the formula for the cardinality of the product of two subgroups of a finite group, we obtain

$$
\left|\Gamma^{*} \Delta^{*}\right|=\frac{\left|\Gamma^{*}\right|\left|\Delta^{*}\right|}{\left|\Gamma^{*} \cap \Delta^{*}\right|}=\frac{\left(q^{a}-1\right)\left(q^{b}-1\right)}{\left(q^{c}-1\right)}
$$

Now, each double coset $\Gamma^{*} \omega_{k} \Delta^{*}$ is a left coset $\omega_{k}\left(\Gamma^{*} \Delta^{*}\right)$ of the subgroup $\Gamma^{*} \Delta^{*}$ and has the same cardinality as $\Gamma^{*} \Delta^{*}$, computed above. Therefore, the $q^{d}-1$ elements of W^{*} are partitioned into

$$
m=\frac{\left|W^{*}\right|}{\left|\Gamma^{*} \Delta^{*}\right|}=\frac{\left(q^{d}-1\right)\left(q^{c}-1\right)}{\left(q^{a}-1\right)\left(q^{b}-1\right)}=\frac{[d]_{q}[c]_{q}}{[a]_{q}[b]_{q}}
$$

double cosets.
(ii) We write

$$
\Gamma^{*} \omega_{k} \Delta^{*}=\bigcup_{\gamma \in \Gamma^{*}}\left(\gamma \omega_{k}\right) \Delta^{*},
$$

where any two left cosets of Δ^{*} in W^{*} are either equal or disjoint. To compute the number of disjoint cosets in this union, we divide the total number of elements of $\Gamma^{*} \omega_{k} \Delta^{*}$ by $\left|\Delta^{*}\right|$ (see part (i)):

$$
\frac{\left(q^{a}-1\right)\left(q^{b}-1\right)}{\left(q^{c}-1\right)\left(q^{b}-1\right)}=\frac{[a]_{q}}{[c]_{q}} .
$$

Therefore, we can choose elements $\gamma_{1}, \ldots, \gamma_{[a]_{q} /[c]_{q}} \in \Gamma^{*}$ such that $\gamma_{1} \omega_{k}, \ldots, \gamma_{[a]_{q} /[c]_{q}} \omega_{k}$ are distinct coset representatives of Δ^{*} in W^{*}. Moreover, we have

$$
\gamma_{i} \omega_{k} \Delta^{*}=\gamma_{i^{\prime}} \omega_{k} \Delta^{*} \Longleftrightarrow \gamma_{i} \Delta^{*}=\gamma_{i^{\prime}} \Delta^{*} \Longleftrightarrow \gamma_{i} \gamma_{i^{\prime}}^{-1} \in \Gamma^{*} \cap \Delta^{*}=\mathbb{F}_{q^{c}}
$$

As a result, it suffices to fix a complete set $\gamma_{1}, \ldots, \gamma_{[a]_{q} /[c]_{q}}$ of coset representatives of $\mathbb{F}_{q^{c}}$ in Γ^{*} regardless of the value of k.
(iii) Similar to the proof of part (ii).
(iv) If $(i, j, k) \neq\left(i^{\prime}, j^{\prime}, k^{\prime}\right)$, then at least one of the following must be true for the elements $\gamma_{i} \omega_{k} \delta_{j}$ and $\gamma_{i^{\prime}} \omega_{k^{\prime}} \delta_{j^{\prime}}$ of W^{*} : they are (a) in distinct double ($\left.\Gamma^{*}, \Delta^{*}\right)$-cosets; or (b) in distinct left cosets of Δ^{*}; or (c) in distinct right cosets of Γ^{*}. Hence, such elements cannot be equal. In addition, we observe that there are

$$
\frac{[a]_{q}}{[c]_{q}} \frac{[d]_{q}[c]_{q}}{[a]_{q}[b]_{q}} \frac{[b]_{q}}{[c]_{q}}=\frac{[d]_{q}}{[c]_{q}}=\left[W^{*}: \mathbb{F}_{q^{c}}^{*}\right]
$$

of them, and

$$
\begin{aligned}
& \gamma_{i} \omega_{k} \delta_{j} \mathbb{F}_{q^{c}}=\gamma_{i^{\prime}} \omega_{k^{\prime}} \delta_{j^{\prime}} \mathbb{F}_{q^{c}} \\
\Longrightarrow & \gamma_{i} \omega_{k} \delta_{j}=\gamma_{i^{\prime}} \omega_{k^{\prime}} \underbrace{\delta_{j^{\prime}} \lambda}_{\in \Delta^{*}} \in \Gamma^{*} \omega_{k} \Delta^{*} \cap \Gamma^{*} \omega_{k^{\prime}} \Delta^{*}, \lambda \in \mathbb{F}_{q^{c}} \\
\Longrightarrow & k=k^{\prime} \text { by part (i), and } \gamma_{i} \gamma_{i^{\prime}}^{-1}=\delta_{j}^{-1} \delta_{j^{\prime}} \lambda \in \Gamma^{*} \cap \Delta^{*}=\mathbb{F}_{q^{c}} \\
\Longrightarrow & i=i^{\prime} \text { and } j=j^{\prime} \text { by parts (ii) and (iii). }
\end{aligned}
$$

We may now assert that there are subspace partitions of W of all types $a^{x} b^{y}$ that are allowed by the condition in Eq. (1), that is, $x\left(q^{a}-1\right)+y\left(q^{b}-1\right)=q^{d}-1$. Therefore, our statement recovers a result of Blinco et al. [4]

Lemma 7. Let a, b, c, d be positive integers such that $c=\operatorname{gcd}(a, b), a \mid d$, and $b \mid d$. Then the collection of $m=[d]_{q}[c]_{q} /\left([a]_{q}[b]_{q}\right)$ subsets $\Gamma \omega_{k} \Delta$ of $V(d, q)$ have pairwise zero intersection. Each set $\Gamma \omega_{k} \Delta$ in this collection is simultaneously the union of subspaces $\left(\gamma_{i} \omega_{k}\right) \Delta$ that form a partial b-spread of $V(d, q)$ of cardinality $[a]_{q} /[c]_{q}$ and the union of subspaces $\Gamma\left(\omega_{k} \delta_{j}\right)$ that form a partial a-spread of cardinality $[b]_{q} /[c]_{q}$. As a result, there exist subspace partitions of $V(d, q)$ of all types

$$
a^{i[b]_{q} /[c]_{q}} b^{[d]_{q} /[b]_{q}-i[a]_{q} /[c]_{q}},
$$

with $0 \leq i \leq m$.
Proof. See Lemma 6 and Lemma 5. Clearly, all nonnegative solutions (x, y) of the Diophantine equation $[a]_{q} x+[b]_{q} y=[d]_{q}$ are represented by the listed subspace partitions of types $a^{x} b^{y}$.

3. Reconfiguring the Transversal Subspaces of $U \oplus W$

In this section, we assume that a and b are relatively prime. We arrange the existing notation under this convention in Table 1. We now describe the construction depicted in Figure 1.

Table 1. Notation for W when $\operatorname{gcd}(a, b)=1$

Object	Description	Size/range
W	\mathbb{F}_{q}-space with field structure	$\operatorname{dim} W=d>0$
Γ	subfield of W	$\operatorname{dim} \Gamma=a, a \mid d$
Δ	subfield of W	$\operatorname{dim} \Delta=b, b \mid d$
γ_{i}	\mathbb{F}_{q}^{*}-coset rep in $\Gamma^{*}, \gamma_{1}=1$	$1 \leq i \leq[a]_{q}$
δ_{j}	\mathbb{F}_{q}^{*}-coset rep in $\Delta^{*}, \delta_{1}=1$	$1 \leq j \leq[b]_{q}$
ω_{k}	double $\left(\Gamma^{*}, \Delta^{*}\right)$-coset rep in $W^{*}, \omega_{1}=1$	$1 \leq k \leq m=[d]_{q} /\left([a]_{q}[b]_{q}\right)$
$\gamma_{i} \omega_{k} \delta_{j}$	\mathbb{F}_{q}^{*}-coset rep in W^{*}	$[d]_{q}$
$\omega_{k} \delta_{j}$	Γ^{*}-coset rep in W^{*}	$[d] /[a]_{q}$
$\gamma_{i} \omega_{k}$	Δ^{*}-coset rep in W^{*}	$[d]_{q} /[b]_{q}$

Figure 1. Configuration of the Construction

Construction 8. (1) For positive integers a, b, d, e such that $a<b, \operatorname{gcd}(a, b)=1, b|e, a| d$, and $b \mid d$, consider two vector spaces U and W over \mathbb{F}_{q} of dimensions e and d respectively. We shall describe constructions of subspace partitions of $V=U \oplus W$ consisting of a - and b-subspaces only. We have $n \stackrel{\text { def }}{=} \operatorname{dim} V=e+d$, is divisible by b but not necessarily by a.
(2) We impose a field structure on W and let Γ, Δ be the unique subfields of orders q^{a} and q^{b} respectively, intersecting at the subfield isomorphic to the scalar field \mathbb{F}_{q}. Choose elements $\gamma_{i} \in \Gamma^{*}, \delta_{j} \in \Delta^{*}$, and $\omega_{k} \in W^{*}$ as in Lemma 6, with $1 \leq i \leq[a]_{q}, 1 \leq j \leq[b]_{q}$, and $1 \leq k \leq m=[d]_{q} /\left([a]_{q}[b]_{q}\right)$. Without loss of generality, let $\gamma_{1}=\delta_{1}=\omega_{1}=1 \in W$.
(3) We also endow U with a field structure. Let B be its unique subfield of order q^{b} and $v_{1}, \ldots, v_{[e]_{q} /[b]_{q}}$ be a set of B^{*}-coset representatives in U^{*}. By Lemma 5, the b-subspaces
$v_{1} B, \ldots, v_{[e]_{q} /\left[b_{q}\right.} B$ form a b-spread of U. Without loss of generality, let $v_{1}=1 \in U$. We also fix an a-dimensional subspace A of B such that \mathbb{F}_{q} is contained in A.
(4) We now identify various subspaces and subfields. Let $g: \Delta \rightarrow B$ be a field isomorphism, which necessarily satisfies $g\left(\delta_{1}\right)=g(1)=1$; set $\beta_{j}=g\left(\delta_{j}\right)$ for $1 \leq j \leq[b]_{q}$. Without loss of generality, assume that $\beta_{1}, \ldots, \beta_{[a]_{q}} \in A$, and that the first a of them, $\beta_{1}, \ldots, \beta_{a}$, form a basis of A. We define an \mathbb{F}_{q}-linear isomorphism $f: \Gamma \rightarrow A$ by setting $f\left(\gamma_{i}\right) \stackrel{\text { def }}{=} \beta_{i}=g\left(\delta_{i}\right)$ for $1 \leq i \leq a$. Finally, let $\alpha_{i} \stackrel{\text { def }}{=} \beta_{i}$ for $1 \leq i \leq[a]_{q}$.

We display the new information from Construction 8 in Table 2.
Table 2. Notation for $V=U \oplus W$ when $\operatorname{gcd}(a, b)=1$

Object	Description	Size/range
U	\mathbb{F}_{q}-space with field structure	$\operatorname{dim} U=e>0$
W	\mathbb{F}_{q}-space with field structure	$\operatorname{dim} W=d>0$
V	$U \oplus W, \mathbb{F}_{q}$-space	$\operatorname{dim} V=n=e+d$
B	subfield of U	$\operatorname{dim} B=b, b\|e, b\| d$
A	subspace of B containing \mathbb{F}_{q}	$\operatorname{dim} A=a<b, a \mid d$
f	linear isomorphism	$f: \Gamma \rightarrow A$
g	field isomorphism	$g: \Delta \rightarrow B$
v_{ℓ}	B^{*}-coset reps in $U^{*}, v_{1}=1$	$1 \leq \ell \leq[e]_{q} /[b]_{q}$
β_{j}	$g\left(\delta_{j}\right), \mathbb{F}_{q}^{*}$-coset reps in $B^{*}, \beta_{1}=1$	$1 \leq j \leq[b]_{q}$
α_{i}	$\beta_{i}=f\left(\gamma_{i}\right)=g\left(\delta_{i}\right)$, reps of 1-D subspaces in $A, \alpha_{1}=1$	$1 \leq i \leq[a]_{q}$
$v_{\ell} \beta_{j}$	\mathbb{F}_{q}^{*}-coset reps in U^{*}	$[e]_{q}$

We will now construct a partial a-spread of $V=U \oplus W$ whose subspaces have the property that all nonzero vectors have nonzero projections onto U and W : we will call any such subspace transversal. Hence, these subspaces have pairwise trivial intersection with those in each of the subspace partitions of W that we have described in Lemma 7.
Lemma 9. Let the notation be as in Tables 1 and 2, with $\operatorname{gcd}(a, b)=1$. For each triple (v, j, k) with $v \in U^{*}, 1 \leq j \leq[b]_{q}$, and $1 \leq k \leq[d]_{q} /\left([a]_{q}[b]_{q}\right)$, we define a map

$$
\phi_{j}^{(k, v)} \stackrel{\text { def }}{=} v \cdot f+\omega_{k} \delta_{j} \cdot i d_{\Gamma}: \Gamma \rightarrow U \oplus W .
$$

Then $\phi_{j}^{(k, v)}$ is \mathbb{F}_{q}-linear and injective. Hence, the subspaces

$$
A_{j}^{(k, v)} \stackrel{\text { def }}{=} \operatorname{Im} \phi_{j}^{(k, v)}=\left\{v f(\gamma)+\gamma \omega_{k} \delta_{j}: \gamma \in \Gamma\right\}
$$

of $U \oplus W$ are a-dimensional over \mathbb{F}_{q}. Moreover, we have $A_{j}^{(k, v)}=A_{j^{\prime}}^{\left(k^{\prime}, v^{\prime}\right)}$ if $(v, j, k)=\left(v^{\prime}, j^{\prime}, k^{\prime}\right)$ and $A_{j}^{(k, v)} \cap A_{j^{\prime}}^{\left(k^{\prime}, v^{\prime}\right)}=\{\mathbf{0}\}$ otherwise, giving rise to a partial a-spread of $U \oplus W$ with $\left(q^{e}-1\right)[d]_{q} /[a]_{q}$ transversal subspaces.

Proof. Linearity is clear. If $v f(\gamma)+\gamma \omega_{k} \delta_{j}=\mathbf{0}$, then we must have $f(\gamma)=\mathbf{0}$ since $v \neq \mathbf{0}$, and $\gamma=\mathbf{0}$ since f is injective. This shows that $\phi_{j}^{(k, v)}$ is injective.

Assume that for some $v, v^{\prime} \in U^{*}, j, j^{\prime} \in\left\{1, \ldots,[b]_{q}\right\}, k, k^{\prime} \in\left\{1, \ldots,[d]_{q} /\left([a]_{q}[b]_{q}\right)\right\}$, and $\gamma, \gamma^{\prime} \in$ Γ^{*}, we have

$$
v f(\gamma)+\gamma \omega_{k} \delta_{j}=v^{\prime} f\left(\gamma^{\prime}\right)+\gamma^{\prime} \omega_{k^{\prime}} \delta_{j^{\prime}} .
$$

By the construction of coset representatives of Γ^{*} in W^{*} (see Table 1), we must have $j=j^{\prime}$ and $k=k^{\prime}$. Thus, from the above, we first obtain $\gamma=\gamma^{\prime}$ and $v f(\gamma)=v^{\prime} f\left(\gamma^{\prime}\right)$, from which we may conclude $v=v^{\prime}$.

Remark 10. This construction is optimal in the sense that if a were to divide e as well, then together with a-spreads of U and W, we would obtain a total of

$$
\left(q^{e}-1\right) \frac{[d]_{q}}{[a]_{q}}+\frac{[e]_{q}}{[a]_{q}}+\frac{[d]_{q}}{[a]_{q}}=\frac{q^{e}[d]_{q}+[e]_{q}}{[a]_{q}}=\frac{[n]_{q}}{[a]_{q}}
$$

subspaces, forming an a-spread of $V=U \oplus W$.
Here is a similar construction of transversal b-subspaces of $U \oplus W$.
Lemma 11. Let the notation be as in Tables 1 and 2, with $\operatorname{gcd}(a, b)=1$. For each triple (ν, i, k) with $\nu \in U^{*}, 1 \leq i \leq[a]_{q}$, and $1 \leq k \leq[d]_{q} /\left([a]_{q}[b]_{q}\right)$, we define a map

$$
\psi_{i}^{(k, \nu)} \stackrel{\text { def }}{=} \nu \cdot g+\gamma_{i} \omega_{k} \cdot i d_{\Delta}: \Delta \rightarrow U \oplus W .
$$

The maps $\psi_{i}^{(k, \nu)}$ are \mathbb{F}_{q}-linear and injective. The subspaces

$$
B_{i}^{(k, \nu)} \stackrel{\text { def }}{=} \operatorname{Im} \psi_{i}^{(k, \nu)}=\left\{\nu g(\delta)+\gamma_{i} \omega_{k} \delta: \delta \in \Delta\right\}
$$

of $U \oplus W$ are b-dimensional over \mathbb{F}_{q}. Moreover, we have $B_{i}^{(k, \nu)}=B_{i^{\prime}}^{\left(k^{\prime}, \nu^{\prime}\right)}$ if $(\nu, i, k)=\left(\nu^{\prime}, i^{\prime}, k^{\prime}\right)$ and $B_{i}^{(k, \nu)} \cap B_{i^{\prime}}^{\left(k^{\prime}, \nu^{\prime}\right)}=\{\mathbf{0}\}$ otherwise, giving rise to a partial b-spread of $U \oplus W$ with $\left(q^{e}-1\right)[d]_{q} /[b]_{q}$ transversal subspaces.
Proof. The proof is similar to that of Lemma 9, with Γ^{*}-coset representatives in W^{*} replaced by Δ^{*}-coset representatives.
Remark 12. Since b divides both d and e, together with b-spreads of U and W, we obtain a total of

$$
\left(q^{e}-1\right) \frac{[d]_{q}}{[b]_{q}}+\frac{[e]_{q}}{[b]_{q}}+\frac{[d]_{q}}{[b]_{q}}=\frac{q^{e}[d]_{q}+[e]_{q}}{[b]_{q}}=\frac{[n]_{q}}{[b]_{q}}
$$

subspaces, forming a b-spread of $V=U \oplus W$.
Remark 13. Further partitioning the elements of U^{*} into B^{*}-cosets $\nu_{\ell} B^{*}$ (see Table 2), we refine our construction in Lemma 9 to the a-subspaces

$$
A_{j}^{(k, \ell, \beta)} \stackrel{\text { def }}{=}\left\{v_{\ell} \beta \beta_{j} f(\gamma)+\gamma \omega_{k} \delta_{j}: \gamma \in \Gamma\right\}
$$

for (β, j, k, ℓ) with $\beta \in B^{*}, 1 \leq j \leq[b]_{q}, 1 \leq k \leq[d]_{q} /\left([a]_{q}[b]_{q}\right)$, and $1 \leq \ell \leq[e]_{q} /[b]_{q}$. This is still in full generality as every B^{*}-coset remains invariant under multiplication by the fixed element β_{j} of B^{*} (resp., by $\alpha_{i}=\beta_{i}$ below.) Similarly, we define b-subspaces that are more nuanced with respect to Lemma 11 via

$$
B_{i}^{(k, \ell, \beta)} \stackrel{\text { def }}{=}\left\{v_{\ell} \beta \alpha_{i} g(\delta)+\gamma_{i} \omega_{k} \delta: \delta \in \Delta\right\}
$$

for (β, i, k, ℓ) with $\beta \in B^{*}, 1 \leq i \leq[a]_{q}, 1 \leq k \leq[d]_{q} /\left([a]_{q}[b]_{q}\right)$, and $1 \leq \ell \leq[e]_{q} /[b]_{q}$.
We are ready to describe the main reconfiguration result for two distinct subspace dimensions a and b.

Proposition 14. Let the notation be as in Table 1, Table 2, and Remark 13, where $\operatorname{gcd}(a, b)=1$. Then for all fixed (β, k, ℓ) with $\beta \in B^{*}, 1 \leq k \leq[d]_{q} /\left([a]_{q}[b]_{q}\right)$, and $1 \leq \ell \leq[e]_{q} /[b]_{q}$, we have

$$
\bigsqcup_{j=1}^{[b]_{q}}\left(A_{j}^{(k, \ell, \beta)}\right)^{*}=\bigsqcup_{i=1}^{[a]_{q}}\left(B_{i}^{(k, \ell, \beta)}\right)^{*} .
$$

There are

$$
\left(q^{e}-1\right) \frac{[d]_{q}}{[a]_{q}[b]_{q}}
$$

such possible reconfigurations as β, k, and ℓ vary.
Proof. For later use, first recall from Construction 8, part (4), that $\alpha_{i} \stackrel{\text { def }}{=} \beta_{i}$ for $1 \leq i \leq[a]_{q}$.
Let

$$
x=v_{\ell} \beta \beta_{j} f(\gamma)+\gamma \omega_{k} \delta_{j} \in\left(A_{j}^{(k, \ell, \beta)}\right)^{*}
$$

The element $\gamma \in \Gamma^{*}$ has a unique representation $\gamma=\lambda \gamma_{i}$ for some $\lambda \in \mathbb{F}_{q}^{*}$ and $1 \leq i \leq[a]_{q}$. Hence, we have

$$
\lambda^{-1} x=v_{\ell} \beta \beta_{j} f\left(\gamma_{i}\right)+\gamma_{i} \omega_{k} \delta_{j}=v_{\ell} \beta \alpha_{i} g\left(\delta_{j}\right)+\gamma_{i} \omega_{k} \delta_{j} \in\left(B_{i}^{(k, \ell, \beta)}\right)^{*}
$$

Conversely, if

$$
y=v_{\ell} \beta \alpha_{i} g(\delta)+\gamma_{i} \omega_{k} \delta \in\left(B_{i}^{(k, \ell, \beta)}\right)^{*}
$$

then the element $\delta \in \Delta^{*}$ has a unique representation as $\delta=\lambda \delta_{j}$ for some $\lambda \in \mathbb{F}_{q}^{*}$ and $1 \leq j \leq[b]_{q}$. We have

$$
\lambda^{-1} y=v_{\ell} \beta \alpha_{i} g\left(\delta_{j}\right)+\gamma_{i} \omega_{k} \delta_{j}=v_{\ell} \beta \beta_{j} f\left(\gamma_{i}\right)+\gamma_{i} \omega_{k} \delta_{j} \in\left(A_{j}^{(k, \ell, \beta)}\right)^{*}
$$

Let us summarize our findings in this section.
Proposition 15. Let a, b, d, e, n be positive integers such that $a<b, \operatorname{gcd}(a, b)=1, a|d, b| d$, $b \mid e$, and $n=e+d$ (see Tables 1 and 2 for further notation.) If U is an \mathbb{F}_{q}-space of dimension e and W is an \mathbb{F}_{q}-space of dimension d, then there exist $\left(q^{e}-1\right)[d]_{q} /\left([a]_{q}[b]_{q}\right)$ disjoint subsets of the set

$$
(U \oplus W)^{*} \backslash\left(U^{*} \sqcup W^{*}\right)
$$

each of which can be set-partitioned both into the nonzero vectors of $[b]_{q}$ subspaces of dimension a and into those of $[a]_{q}$ subspaces of dimension b.
Remark 16. In order to update the last result to the case $c=\operatorname{gcd}(a, b)$, we divide the dimensions of all subspaces under consideration by c and consider them subspaces over the field $\mathbb{F}_{q^{c}}$ according to Lemma 4. Over $\mathbb{F}_{q^{c}}$, we have

$$
\begin{aligned}
& \left|U^{*}\right|=\left(q^{c}\right)^{e / c}-1=q^{e}-1 \quad \text { (number of nonzero elements of } U\left(e / c, q^{c}\right) \text {) and } \\
& \frac{[d / c]_{q}}{[a / c]_{q}[b / c]_{q}}=\frac{[d]_{q} /[c]_{q}}{[a]_{q}[b]_{q} /[c]_{q}^{2}}=\frac{[d]_{q}[c]_{q}}{[a]_{q}[b]_{q}} \text { (number of double cosets in } W\left(d / c, q^{c}\right) . \text {) }
\end{aligned}
$$

Then there are

$$
\left(q^{e}-1\right) \frac{[d]_{q}[c]_{q}}{[a]_{q}[b]_{q}}
$$

disjoint subsets in Proposition 15, each of which can give us a partial spread of type $a^{[b]_{q} /[c]_{q}}$ or a partial spread of type $b^{[a]_{q} /[c]_{q}}$ over \mathbb{F}_{q}.

4. Proof of the Main theorem

In this section, we prove our main theorem.
Proof of Theorem 1. The various partitions of the types listed can be directly constructed using Lemma 7 and Remark 16 following Proposition 15. Nonnegative solutions of the Diophantine equation Eq. (1) exist, as $[b]_{q} \mid[n]_{q}$, and are given by

$$
\begin{equation*}
\left(x_{i}, y_{i}\right)=\left(0, \frac{[n]_{q}}{[b]_{q}}\right)+i\left(\frac{[b]_{q}}{[c]_{q}},-\frac{[a]_{q}}{[c]_{q}}\right), \quad 0 \leq i \leq\left\lfloor\frac{[n]_{q}[c]_{q}}{[a]_{q}[b]_{q}}\right\rfloor \tag{2}
\end{equation*}
$$

By Lemma 7, we are able to reconfigure between zero and $m=[d]_{q}[c]_{q} /\left([a]_{q}[b]_{q}\right)$ batches of a subspaces of W (where each batch contains $[b]_{q} /[c]_{q}$ of them) from b-dimensional subspaces as expected. Next, Remark 16 shows us that there are up to $\left(q^{e}-1\right) m$ additional batches (again, of $[b]_{q} /[c]_{q}$ subspaces of dimension a each) available by reconfiguration from some of the transversal b-subspaces. The total number of times we can convert b 's into a 's (the upper limit of i in the statement of this theorem) is then $M=q^{e} m=q^{e}[d]_{q}[c]_{q} /\left([a]_{q}[b]_{q}\right)$.

For the second part of the theorem, we obtain $y_{M+1}<0$ in Eq. (2) if and only if the condition $[s]_{q^{b}}<[a / c]_{q^{s}}$ is satisfied. Thus,

$$
\begin{aligned}
y_{M+1} & =\frac{[s b+d]_{q}}{[b]_{q}}-\left(\frac{q^{s b}[d]_{q}[c]_{q}}{[a]_{q}[b]_{q}}+1\right) \frac{[a]_{q}}{[c]_{q}} \\
& =\frac{[s b+d]_{q}-q^{s b}[d]_{q}}{[b]_{q}}-\frac{[a]_{q}}{[c]_{q}} \\
& =\frac{[s b]_{q}}{[b]_{q}}-\frac{[a]_{q}}{[c]_{q}} \\
& =[s]_{q^{b}}-[a / c]_{q^{c}} .
\end{aligned}
$$

If a divides b, then $V(n, q)$ clearly admits a subspace partition of type $a^{[n] q /[a]_{q}}$, i.e., an a-spread. Thus, when $e=b$, we have $s=1$ and either a divides b or $[s]_{q^{b}}<[a / c]_{q^{c}}$. In both cases all possible subspace partition types $a^{x} b^{y}$ of V are covered.

Acknowledgement: We thank the anonymous referees for valuable and detailed suggestions which helped improve the presentation of the paper.

References

[1] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z. 60 (1954), 156-186.
[2] A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Z. 145 (1975), 211-229.
[3] A. Beutelspacher, Partitions of finite vector spaces: an application of the Frobenius number in geometry, Arch. Math. 31 (1978), 202-208.
[4] A. Blinco, S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, and C. Vanden Eynden, On vector space partitions and uniformly resolvable designs, Des. Codes Cryptogr. 48 (2008), 69-77.
[5] T. Bu, Partitions of a vector space, Discrete Math. 31 (1980), 79-83.
[6] D. Drake and J. Freeman, Partial t-spreads and group constructible (s, r, μ)-nets, J. Geom. 13 (1979), 211-216.
[7] E. Gorla and A. Ravagnani, Partial spreads in random network coding, Finite Fields Appl. 26 (2014), 104-115.
[8] O. Heden, A survey of the different types of vector space partitions, Discrete Math. Algorithms Appl. 4 (2012), 1-14.
[9] M. Herzog and J. Schönheim, Linear and nonlinear single error-correcting perfect mixed codes, Informat. and Control 18 (1971), 364-368.
[10] T. Honold, M. Kiermaier, and S. Kurz, Partial spreads and vector space partitions, in Network Coding and Subspace Designs, Springer (2018), 131-170.
[11] S. Hong and A. Patel, A general class of maximal codes for computer applications, IEEE Trans. Comput. C-21 (1972), 1322-1331.
[12] A. Khare, Vector spaces as unions of proper subspaces, Linear Algebra Appl. 431 (2009), 1681-1686.
[13] S. Kurz, Improved upper bounds for partial spreads, Des. Codes Cryptogr., 85(1) (2017), 97-106.
[14] S. Kurz. Packing vector spaces into vector spaces, Australas. J. Combin., 68(1) (2017), 122-130.
[15] E. Năstase and P. Sissokho, The maximum size of a partial spread in a finite projective space, J. Combin. Theory Ser. A 152 (2017), 353-362.
[16] S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, C. Vanden Eynden, Partitions of finite vector spaces into subspaces, J. Comb. Des. 16(4) (2008), 329-341.
[17] G. Seelinger, P. Sissokho, L. Spence, C. Vanden Eynden, Partitions of $V(n, q)$ into 2- and s-dimensional subspaces, J. Comb. Des. 18 (2012), 467-482.
[18] G. Seelinger, P. Sissokho, L. Spence, C. Vanden Eynden, Partitions of finite vector spaces over $G F(2)$ into subspaces of dimensions 2 and s, Finite Fields Appl. 18(6) (2012), 1114-1132.
[19] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl. 64 (1964), 1-76.
(Fusun Akman and Papa A. Sissokho) Mathematics Department, Illinois State University, Normal, Illinois 61790, USA

Email address: akmanf@ilstu.edu
Email address, Corresponding author: psissok@ilstu.edu

[^0]: ${ }^{1}$ These double coset properties are implicit [4, Lemma 2.1], but we use them in a more extensive and explicit way here.

