On ρ-labeling 2-regular graphs consisting of 5-cycles

S. I. El-Zanati1, D. I. Gannon2

14520 Mathematics Department
Illinois State University
Normal, Illinois 61790–4520, U.S.A.

2Department of Mathematics
University of Illinois
Urbana, Illinois 61801, U.S.A.

email: saad@ilstu.edu, gannon2@illinois.edu

Abstract

Let G be a graph of size n with vertex set $V(G)$ and edge set $E(G)$. A ρ-labeling of G is a one-to-one function $h : V(G) \rightarrow \{0, 1, \ldots, 2n\}$ such that $\{\min\{|h(u)−h(v)|, 2n+1−|h(u)−h(v)|\} : \{u, v\} \in E(G)\} = \{1, 2, \ldots, n\}$. Such a labeling of G yields a cyclic G-decomposition of K_{2n+1}. It is conjectured by El-Zanati and Vanden Eynden that every 2-regular graph G admits a ρ-labeling. We show that the vertex-disjoint union of any number of 5-cycles admits a ρ-labeling.

1 Introduction

If a and b are integers we denote $\{a, a+1, \ldots, b\}$ by $[a, b]$ (if $a > b$, $[a, b] = \emptyset$). Let \mathbb{N} denote the set of nonnegative integers and \mathbb{Z}_n the group of integers modulo n. For a graph G, let $V(G)$ and $E(G)$ denote the vertex set of G and the edge set of G, respectively. Let rG denote the vertex-disjoint union of r copies of G.

Let $V(K_k) = \mathbb{Z}_k$ and let G be a subgraph of K_k. By clicking G, we mean applying the isomorphism $i \rightarrow i + 1$ to $V(G)$. Let H and G be graphs

Key words and phrases: ρ-labeling, 2-regular graphs, cyclic graph designs.
AMS (MOS) Subject Classifications: Primary 05C78, Secondary 05C38
such that G is a subgraph of H. A G-decomposition of H is a set $\Gamma = \{G_1, G_2, \ldots, G_r\}$ of edge-disjoint subgraphs of H each of which is isomorphic to G and such that $E(H) = \bigcup_{i=1}^r E(G_i)$. A G-decomposition of K_k is known as a G-design of order k. A G-decomposition Γ of K_k is cyclic if clicking is a permutation of Γ.

The investigation of G-designs is a popular area of research in combinatorial design theory. For example, if G is K_k, then a G-design of order v is a $(v, k, 1)$-BIBD. If G has n edges, then G-designs of order $2n + 1$ are of particular interest. In 1963, Ringel [8] conjectured that there is a G-design of order $2n + 1$ for every tree G with n edges. In [9], Rosa introduced graph labelings as means of attacking Ringel’s conjecture.

For any graph G, a one-to-one function $h : V(G) \to \mathbb{N}$ is called a labeling (or a valuation) of G. Let G be a graph with n edges and no isolated vertices and let h be a labeling of G. Let $h(V(G)) = \{h(u) : u \in V(G)\}$. Define a function $\bar{h} : E(G) \to \mathbb{Z}^+$ by $\bar{h}(e) = |h(u) - h(v)|$, where $e = \{u, v\} \in E(G)$ and let $(\bar{h}(e))^* = \min\{\bar{h}(e), 2n + 1 - \bar{h}(e)\}$. We will refer to $\bar{h}(e)$ and $(\bar{h}(e))^*$ as the label and the length of e, respectively. If $F \subseteq E(G)$, then $\bar{h}(F) = \{\bar{h}(e) : e \in F\}$ and $(\bar{h}(F))^* = \{(\bar{h}(e))^* : e \in F\}$. We say h is a ρ-labeling of G if $h(V(G)) \subseteq [0, 2n]$ and $(\bar{h}(E(G))^* = [1, n]$. If $h(V(G)) \subseteq [0, n]$ and $\bar{h}(E(G)) = [1, n]$, then h is β-labeling or a graceful labeling of G.

Labelings are critical to the study of cyclic graph decompositions as seen in the following result from [9].

Theorem 1. Let G be a graph with n edges. There exists a cyclic G-decomposition of K_{2n+1} if and only if G has a ρ-labeling.

While a ρ-labeling is the most basic of Rosa’s labelings, β-labelings (i.e., graceful) are by far the most popular. Graphs that admit a graceful labeling are called graceful. A conjecture that every tree is graceful is one of the best known conjectures in design theory. Unfortunately, graceful labelings are too restrictive for many classes of graphs. For example, K_4 is the largest complete graph that is graceful and C_n is graceful if and only if $n \equiv 0$ or 3 (mod 4). For a comprehensive survey of graph labelings that lead to cyclic G-designs, we direct the reader to [5]. A dynamic survey on general graph labelings is maintained by Gallian [6].

In this manuscript, we will focus on ρ-labelings of rC_5, the the vertex-disjoint union of r copies of C_5. Kotzig [7] has shown that rC_5 is never graceful. In the same paper, Kotzig showed that rC_3 is graceful only if $r = 1$. A subsequent result of Dimitz and Rodney [3] is equivalent to showing that rC_3 admits a ρ-labeling for all positive integers r. From results in [1],
it can be concluded that every 2-regular bipartite graph admits a ρ-labeling. More recently, it was shown in [2] that rC_{4x+1} has a ρ-labeling for $r \leq 10$ and $x \geq 1$. Here, we shall show that rC_5 has a ρ-labeling for all integers $r \geq 1$. This provides further evidence in support of a conjecture of El-Zanati and Vanden Eynden that every 2-regular graph admits a ρ-labeling.

2 Main Result

Let C_5 be the graph with vertex set $\{v_i : 1 \leq i \leq 5\}$ and edge set $\{(v_i, v_{i+1}) : 1 \leq i \leq 4\} \cup \{(v_5, v_1)\}$. For a positive integer r, let $G = rC_5$, the vertex-disjoint union of r copies of C_5. For $1 \leq j \leq r$, let the j^{th} component of G have vertex set $\{v_{i,j} : 1 \leq i \leq 5\}$ and edge set $\{(v_{i,j}, v_{i+1,j}) : 1 \leq i \leq 4\} \cup \{(v_{5,j}, v_{1,j})\}$. For $1 \leq i \leq 5$, let $V_i = \{v_{i,j} : 1 \leq j \leq r\}$. For $1 \leq i \leq 4$, and $1 \leq j \leq r$, let $e_{i,j}$ denote the edge $\{v_{i,j}, v_{i+1,j}\}$ and let $e_{5,j}$ denote the edge $\{v_{5,j}, v_{1,j}\}$. Finally, for $1 \leq i \leq 5$, let $E_i = \{e_{i,j} : 1 \leq j \leq r\}$.

Theorem 2. Let $G = rC_5$. Then G admits a ρ-labeling.

Proof. We will consider two cases depending on whether r is even or odd.

Case 1: r is even.

Let $r = 2t$. Thus $|V(G)| = |E(G)| = 10t$. Let $h : V(G) \to [0, 20t]$ be defined as follows:

For $1 \leq j \leq 2t$, let

\[
\begin{align*}
 h(v_{1,j}) &= j - 1, \\
 h(v_{3,j}) &= 2t + j - 1, \\
 h(v_{4,j}) &= 10t + 3j - 1, \\
 h(v_{5,j}) &= 6t + 2j - 1,
\end{align*}
\]

and let

\[
h(v_{2,j}) = \begin{cases}
20t - j & \text{if } 1 \leq j \leq t, \\
6t - j & \text{if } t + 1 \leq j \leq 2t.
\end{cases}
\]

Figure 2 shows the case $r = 6$. Note that when restricted to each V_i, the function h is either strictly increasing or strictly decreasing. Thus, $h(v_{i,j})$
and $h(v_{i,k})$ are equal if and only if $j = k$. Moreover,

$h(V_1) = [0, 2t - 1],$
$h(V_2) = [19t, 20t - 1] \cup [4t, 5t - 1],$
$h(V_3) = [2t, 4t - 1],$
$h(V_4) \subseteq [10t + 2, 16t - 1],$
$h(V_5) \subseteq [6t + 1, 10t - 1].$

Thus $h(V_i)$ and $h(V_j)$ are disjoint for $i \neq j$ and $h(V(G)) \subseteq [0, 20t]$. It remains to show that $(\overline{h}(E(G)))^* = [1, 10t]$.

We now compute the resulting edge labels. For $1 \leq j \leq t$, we have

$\overline{h}(e_{1,j}) = 20t - 2j + 1,$
$h(e_{2,j}) = 18t - 2j + 1,$
$h(e_{3,j}) = 8t + 2j,$
$h(e_{4,j}) = 4t + j,$
$h(e_{5,j}) = 6t + j.$

Since the edge labels $\overline{h}(e_{1,j})$ and $h(e_{2,j})$ exceed $10t$, their corresponding edge lengths are $(\overline{h}(e_{1,j}))^* = 2j$ and $(\overline{h}(e_{2,j}))^* = 2t + 2j$. Similarly, for $t + 1 \leq j \leq 2t$, we compute

$\overline{h}(e_{1,j}) = 6t - 2j + 1,$
$h(e_{2,j}) = 4t - 2j + 1,$
$h(e_{3,j}) = 8t + 2j,$
$h(e_{4,j}) = 4t + j,$
$h(e_{5,j}) = 6t + j.$

In this case, $\overline{h}(e_{3,j})$ is the only label that exceeds $10t$. The corresponding
edge length is $(\bar{h}(e_{3,j}))^* = 12t - 2j + 1$. Thus,

$$(\bar{h}(E_1))^* = \{2j : 1 \leq j \leq t\} \cup \{6t - 2j + 1 : t + 1 \leq j \leq 2t\},$$

$$(\bar{h}(E_2))^* = \{2t - 2j + 1 : 1 \leq j \leq t\} \cup \{4t - 2j + 1 : t + 1 \leq j \leq 2t\},$$

$$(\bar{h}(E_3))^* = \{8t + 2j : 1 \leq j \leq t\} \cup \{12t - 2j + 1 : t + 1 \leq j \leq 2t\}.$$

$$(\bar{h}(E_4))^* = \{4t + j : 1 \leq j \leq 2t\},$$

$$(\bar{h}(E_5))^* = \{6t + j : 1 \leq j \leq 2t\}.$$

The above sets can be rewritten as:

$$(\bar{h}(E_1))^* = \{2m : 1 \leq m \leq t\} \cup \{2m - 1 : t + 1 \leq m \leq 2t\},$$

$$(\bar{h}(E_2))^* = \{2m - 1 : 1 \leq m \leq t\} \cup \{2m : t + 1 \leq m \leq 2t\},$$

$$(\bar{h}(E_3))^* = \{m : 8t + 1 \leq m \leq 10t\},$$

$$(\bar{h}(E_4))^* = \{m : 4t + 1 \leq m \leq 6t\},$$

$$(\bar{h}(E_5))^* = \{m : 6t + 1 \leq m \leq 8t\}.$$

Thus, $(\bar{h}(E(G))^* = [1, 10t]$ and h is a ρ-labeling of G.

Case 2: r is odd.

Let $r = 2t + 1$. Thus $|V(G)| = |E(G)| = 10t$. Let $h : V(G) \rightarrow [0, 20t + 10]$ be defined as follows:

For $1 \leq j \leq 2t + 1$, let

$$h(v_{1,j}) = j - 1,$$

$$h(v_{3,j}) = 2t + j,$$

$$h(v_{4,j}) = 10t + 3j + 4,$$

$$h(v_{5,j}) = 6t + 2j + 2,$$

and let

$$h(v_{2,j}) = \begin{cases}
20t - j + 10 & \text{if } 1 \leq j \leq t, \\
6t - j + 3 & \text{if } t + 1 \leq j \leq 2t + 1.
\end{cases}$$

Figure 2 shows the case $r = 5$. Note that when restricted to each V_i, the function h is either strictly increasing or strictly decreasing. Thus, $h(v_{i,j})$ and $h(v_{i,k})$ are equal if and only if $j = k$. Moreover,

$$h(V_1) = [0, 2t],$$

$$h(V_2) = [19t + 10, 20t + 9] \cup [4t + 2, 5t + 2],$$

$$h(V_3) = [2t + 1, 4t + 1],$$

$$h(V_4) \subseteq [10t + 7, 16t + 7],$$

$$h(V_5) \subseteq [6t + 4, 10t + 4].$$
Thus \(h(V_i) \) and \(h(V_j) \) are disjoint for \(i \neq j \) and \(h(V(G)) \subseteq [0, 20t + 10] \). It remains to show that \((\bar{h}(E(G)))^* = [1, 10t + 5] \).

We now compute the resulting edge labels. For \(1 \leq j \leq t \), we have

\[
\bar{h}(e_{1,j}) = 20t - 2j + 11, \\
\bar{h}(e_{2,j}) = 18t - 2j + 10, \\
\bar{h}(e_{3,j}) = 8t + 2j + 4, \\
\bar{h}(e_{4,j}) = 4t + j + 2, \\
\bar{h}(e_{5,j}) = 6t + j + 3.
\]

Since the edge labels \(\bar{h}(e_{1,j}) \) and \(\bar{h}(e_{2,j}) \) exceed \(10t + 5 \), their corresponding edge lengths are \((\bar{h}(e_{1,j}))^* = 2j \) and \((\bar{h}(e_{2,j}))^* = 2t + 2j + 1 \). Similarly, for \(t + 1 \leq j \leq 2t + 1 \), we compute

\[
\bar{h}(e_{1,j}) = 6t - 2j + 4, \\
\bar{h}(e_{2,j}) = 4t - 2j + 3, \\
\bar{h}(e_{3,j}) = 8t + 2j + 4, \\
\bar{h}(e_{4,j}) = 4t + j + 2, \\
\bar{h}(e_{5,j}) = 6t + j + 3.
\]

In this case, \(\bar{h}(e_{3,j}) \) is the only label that exceeds \(10t + 5 \). The corresponding edge length is \((\bar{h}(e_{3,j}))^* = 12t - 2j + 7 \). Thus,

\[
(\bar{h}(E_1))^* = \{2j : 1 \leq j \leq t\} \cup \{6t - 2j + 4 : t + 1 \leq j \leq 2t + 1\}, \\
(\bar{h}(E_2))^* = \{2t + 2j + 1 : 1 \leq j \leq t\} \cup \{4t - 2j + 3 : t + 1 \leq j \leq 2t + 1\}, \\
(\bar{h}(E_3))^* = \{8t + 2j + 4 : 1 \leq j \leq t\} \cup \{12t - 2j + 7 : t + 1 \leq j \leq 2t + 1\}, \\
(\bar{h}(E_4))^* = \{4t + j + 2 : 1 \leq j \leq 2t + 1\}, \\
(\bar{h}(E_5))^* = \{6t + j + 3 : 1 \leq j \leq 2t + 1\}.
\]
On ρ-labeling 2-regular graphs consisting of 5-cycles

The above sets can be rewritten as:

\[
\begin{align*}
(\bar{h}(E_1))^* &= \{2m : 1 \leq m \leq 2t + 1\}, \\
(\bar{h}(E_2))^* &= \{2m - 1 : 1 \leq m \leq 2t + 1\}, \\
(\bar{h}(E_3))^* &= \{m : 8t + 5 \leq m \leq 10t + 5\}, \\
(\bar{h}(E_4))^* &= \{m : 4t + 3 \leq m \leq 6t + 3\}, \\
(\bar{h}(E_5))^* &= \{m : 6t + 4 \leq m \leq 8t + 4\}.
\end{align*}
\]

Thus, $(\bar{h}(E(G))^* = [1, 10t + 5]$ and \bar{h} is a ρ-labeling of G. \square

In light of Theorem 1 and Theorem 2, we have the following corollary.

Corollary 3. If $G = rC_5$, then there exists a cyclic G-decomposition of K_{10t+1}.

In a forthcoming article [4], we extend the results from this paper to show that every 2-regular graph consisting of m-cycles admits a ρ-labeling.

3 Acknowledgment

This research is supported by grant number A0649210 from the Division of Mathematical Sciences at the National Science Foundation. This work was done under the supervision of the first author as part of: *REU Site: Mathematics Research Experience for Pre-service and for In-service Teachers at Illinois State University.*

References

