On the λ-fold Spectra for Bipartite Subgraphs of 2K_4

1Armstrong Township High School, Armstrong, IL 61812
2Illinois State University, Normal, IL 61790
3Iowa State University, Ames, IA 50011
4University of Wisconsin-La Crosse, La Crosse, WI 54601
5East Leyden High School, Franklin Park, IL 60131

Abstract

For a graph H and a positive integer λ, let $^\lambda H$ denote the multigraph obtained by replacing each edge of H with λ parallel edges. Let G be a multigraph with edge multiplicity 2 and with C_4 as its underlying simple graph. We find necessary and sufficient conditions for the existence of a G-decomposition of $^\lambda K_n$ for all positive integers λ and n.

1 Introduction

If a and b are integers with $a \leq b$, we denote $\{a, a + 1, \ldots, b\}$ by $[a, b]$. Let \mathbb{Z}_n be the group of integers modulo n. For a finite set S and a positive integer λ, we let $^\lambda S$ denote the multiset that contains every element of S exactly λ times. For example, $^3[a, b]$ is the multiset $\{a, a, a + 1, a + 1, a + 1, \ldots, b - 1, b - 1, b - 1, b, b, b\}$. Similarly for a graph H, we let $^\lambda H$ denote the multigraph obtained by replacing each edge in H with λ parallel edges. Thus $^\lambda K_n$ denotes the λ-fold complete multigraph of order n. We note that a multigraph is not required to contain multiple edges. However, our graphs contain no loops. If we wish to emphasize that a given graph does not contain parallel edges, then we refer to it as a simple graph. For positive integers r and s, let $K_{r \times s}$ denote the complete multipartite graph.

*Research supported by National Science Foundation Grant No. A1359300
with \(r \) parts of cardinality \(s \) each. The order and size of a multigraph \(G \) refer to \(|V(G)| \) and \(|E(G)| \), respectively.

Let \(V(\gamma K_n) = [0,n-1] \). The label of an edge \(\{i,j\} \) in \(\gamma K_n \) is defined to be \(|i-j| \). The length of an edge \(\{i,j\} \) in \(\gamma K_n \) is defined to be \(\min\{|i-j|, n-|i-j|\} \). Thus if the elements of \(V(\gamma K_n) \) are placed in order as vertices of an equisided \(n \)-gon, then the length of edge \(\{i,j\} \) is the shortest distance around the polygon between \(i \) and \(j \). Note that if \(n \) is odd, then \(\gamma K_n \) consists of \(\lambda n \) edges of length \(i \) for \(i \in [1, \frac{n-1}{2}] \). Furthermore if \(n \) is even, then \(\gamma K_n \) consists of \(\lambda n \) edges of length \(i \) for \(i \in [1, \frac{n}{2}] \) and \(\frac{\lambda n}{2} \) edges of length \(\frac{n}{2} \).

Let \(V(\gamma K_n) = \mathbb{Z}_n \) and let \(G \) be a subgraph of \(\gamma K_n \). By rotating \(G \), we mean applying the permutation \(i \mapsto i+1 \) to \(V(G) \). Note that rotating an edge does not change its length.

Alternatively, we may let \(V(\gamma K_n) = \mathbb{Z}_{n-1} \cup \{\infty\} \). As expected, rotating a subgraph \(G \) of \(\gamma K_n \) in this case continues to mean applying the permutation \(i \mapsto i+1 \) to \(V(G) \), with the convention that \(\infty + 1 = \infty \). If neither \(i \) nor \(j \) is the \(\infty \)-vertex, then the label and length of the edge \(e = \{i,j\} \) are defined as if \(e \) is in \(\gamma K_{n-1} \). The label and length of an edge \(\{i,\infty\} \) are both defined to be \(\infty \). Again, rotating an edge does not change its length.

In this case, if \(n \) is odd, then \(\gamma K_n \) consists of \(\lambda (n-1) \) edges of length \(\infty \) along with \(\lambda (n-1) \) edges of length \(i \) for \(i \in [1, \frac{n-3}{2}] \) and \(\frac{\lambda (n-1)}{2} \) edges of length \(\infty \). Furthermore if \(n \) is even, then then \(\gamma K_n \) consists of \(\lambda (n-1) \) edges of length \(\infty \) along with \(\lambda (n-1) \) edges of length \(i \) for \(i \in [1, \frac{n-2}{2}] \).

Let \(K \) and \(G \) be graphs with \(G \) a subgraph of \(K \). A \(G \)-decomposition of \(K \) is a set (or multiset) \(\Delta = \{G_1, G_2, \ldots, G_t\} \) of subgraphs of \(K \) each of which is isomorphic to \(G \) (and is called a \(G \)-block) and such that each edge of \(K \) appears in exactly one \(G \)-block. If there exists a \(G \)-decomposition of \(K \), then we say \(G \) divides \(K \) and write \(G \rvert K \). A \(G \)-decomposition of \(K \) is also known as a \((K,G)\)-design. A \((\gamma K_n,G)\)-design is called a \(\gamma \)-design of order \(n \) and index \(\lambda \). A \((\gamma K_n,G)\)-design \(\Delta \) is said to be cyclic if rotating a \(G \)-block in \(\Delta \) yields another \(G \)-block in \(\Delta \). If \(V(\gamma K_n) = \mathbb{Z}_{n-1} \cup \{\infty\} \), then a cyclic \((\gamma K_n,G)\)-design is also called a 1-rotational \((\gamma K_n,G)\)-design. The study of graph decompositions is generally known as the study of graph designs, or \(G \)-designs. For recent surveys on \(G \)-designs of index 1, see [1] and [3].

Let \(G \) be a graph. A classical problem in the study of graph designs is to find necessary and sufficient conditions for the existence of a \(G \)-decomposition of \(\gamma K_n \). This is known as the spectrum problem for \(G \). The set of all such \(n \) is called the spectrum for \(G \)-designs of index \(\lambda \), or alternatively the index \(\lambda \) spectrum for \(G \). The spectra for \(G \)-designs of index 1 has been determined for several classes of graphs including cycles, paths, stars and all graphs of order at most 5 (see [1]).
In recent years, there have been some investigations of \(G \)-designs of index \(\lambda \) where \(G \) is a multigraph with edge multiplicity at least 2. For example, in [6] Carter determined the spectrum for \(G \)-designs of index \(\lambda \) for all connected cubic multigraphs \(G \) of order at most 6. Sarvate and various co-authors have investigated \(G \)-designs of index \(\lambda \) for various multigraphs \(G \) of small order (see for example [7], [10], [12], and [13]). See also [5] and [8] for the spectrum for \(G \)-designs where \(G \) is a multigraph of small order.

In this article, we investigate \(G \)-decompositions of \(\lambda K_n \), where \(G \) is a multigraph with edge multiplicity 2 and with \(C_4 \) as the simple graph underlying \(G \). Figure 1 shows the five possibilities for such a \(G \). We find necessary and sufficient conditions for the existence of a \(G \)-decomposition of \(\lambda K_n \) for all integers \(\lambda \geq 2 \).

![Figure 1: The five multigraphs with edge multiplicity 2 and \(C_4 \) as the underlying simple graph.](image)

2 Main Results

The index \(\lambda \) spectra for \(G_1 \) and \(G_2 \) are settled in [12] and in [6], respectively. Thus we will focus on the three remaining multigraphs. The case \(\lambda = 2 \) for all bipartite subgraphs of \(^2K_4 \) is settled in [2].

2.1 \((\lambda K_n, G_3) \)-designs

We begin with some obvious necessary conditions.

Lemma 1. Let \(\lambda \geq 2 \) and \(n \geq 4 \) be integers. If there exists a \((\lambda K_n, G_3) \)-design, then the following necessarily hold:

1. if \(\gcd(\lambda, 6) = 1 \), then \(n \equiv 0, 1, 4, \) or \(9 \) (mod 12);
2. if \(\gcd(\lambda, 6) = 2 \), then \(n \equiv 0 \) or \(1 \) (mod 3);
3. if \(\gcd(\lambda, 6) = 3 \), then \(n \equiv 0 \) or \(1 \) (mod 4);
4. if \(\gcd(\lambda, 6) = 6 \), then \(n \geq 4 \).

Proof. Let \(\lambda \) and \(n \) be as stated and suppose there exists a \((\lambda K_n, G_3)\)-design.

Since the number of edges in \(G_3 \) is 6, we must have that \(6|\lambda n(n-1)/2 \), and thus \(12|\lambda n(n-1) \). If \(\gcd(\lambda, 6) = 1 \), then \(12|n(n-1) \), and thus \(n \equiv 0, 1, 4, \) or \(9 \) (mod 12). If \(\gcd(\lambda, 6) = 2 \), then \(6|n(n-1) \), and thus \(n \equiv 0 \) or \(1 \) (mod 3). Similarly, if \(\gcd(\lambda, 6) = 3 \), then \(4|n(n-1) \), and thus \(n \equiv 0 \) or \(1 \) (mod 4). Finally, if \(\gcd(\lambda, 6) = 6 \), then \(2|n(n-1) \), which is always true. ■

From Allen et al. [2], we have the following for index 2.

Lemma 2. There exists a \((^2K_n, G_3)\)-design for all \(n \equiv 0 \) or \(1 \) (mod 3) where \(n \neq 3 \).

Next, we settle both the index 3 and index 6 spectra for \(G_3 \).

Lemma 3. There exists a \((^3K_n, G_3)\)-design for all \(n \equiv 0 \) or \(1 \) (mod 4).

Proof. We consider two cases.

Case 1: \(n \equiv 0 \) (mod 4).
Let \(n = 4x \) and let \(V(^3K_{4x}) = \mathbb{Z}_{4x-1} \cup \{\infty\} \). Let

\[
\Delta = \{G_3[\infty, j, 2+j, 1+j]: 0 \leq j \leq 4x-2\} \\
\cup \{G_3[4i+j, j, 4i+2+j, 1+j]: 1 \leq i \leq x-1, 0 \leq j \leq 4x-2\}.
\]

It is easily checked that \(\Delta \) is a 1-rotational \((^3K_{4x}, G_3)\)-design.

Case 2: \(n \equiv 1 \) (mod 4).
Let \(n = 4x+1 \) and let \(V(^3K_{4x+1}) = \mathbb{Z}_{4x+1} \). Let

\[
\Delta = \{G_3[4i+j, j, 4i-2+j, 1+j]: 1 \leq i \leq x, 0 \leq j \leq 4x\}.
\]

It is easily checked that \(\Delta \) is a cyclic \((^3K_{4x}, G_3)\)-design. ■

Lemma 4. There exists a \((^6K_n, G_3)\)-design for all \(n \geq 4 \).

Proof. We consider four cases.

Case 1: \(n \equiv 0 \) or \(1 \) (mod 3).
By Lemma 2 there exists a \((^2K_n, G_3)\)-design. Hence, we can obtain a \((^6K_n, G_3)\)-design from three copies of a \((^2K_n, G_3)\)-design.

Case 2: \(n \equiv 5 \) or \(8 \) (mod 12).
By Lemma 3 there exists a \((^3K_n, G_3)\)-design. Hence, we can obtain a \((^6K_n, G_3)\)-design from two copies of a \((^3K_n, G_3)\)-design.

Case 3: \(n \equiv 2 \) (mod 12).
Let \(n = 12x + 14 \). Then we are looking to show that \(G_3 \) divides \(^6K_{12x+14} \).
We view our $6K_{12x+14}$ as $6K_6 \cup 6K_{12x+8} \cup 6K_{6,12x+8}$. It is proved in the above cases that $G_3|6K_6$ and $G_3|6K_{12x+8}$. We now must show that $G_3|6K_{6,12x+8}$. Clearly $2K_{3,2}$ divides $6K_{6,12x+8}$, so all that remains is to show that $G_3|2K_{3,2}$. Let $2K_{3,2}$ have vertex partition $\{\{u_1, u_2, u_3\}, \{v_1, v_2\}\}$. Then $\{G_3[u_1, u_1, v_2, v_3], G_3[v_1, u_2, v_2, u_3]\}$ is a $(2K_{3,2}, G_3)$-design.

Case 4: $n \equiv 11$ (mod 12).

Let $n = 12x + 11$. Then we are looking to show that G_3 divides $6K_{12x+11}$. We view our $6K_{12x+11}$ as $6K_5 \cup 6K_{12x+6} \cup 6K_{5,12x+6}$. It is proved in the above cases that $G_3|6K_5$ and $G_3|6K_{12x+6}$. We now must show that $G_3|6K_{5,12x+6}$. Clearly $3K_{5,2}$ divides $6K_{5,12x+6}$, so all that remains is to show that $G_3|3K_{5,2}$. Let $3K_{5,2}$ have vertex partition $\{\{u_1, u_2, u_3, u_4, u_5\}, \{v_1, v_2\}\}$. Then $\{G_3[v_1, u_1, v_2, u_5], G_3[v_1, u_2, v_2, u_1], G_3[v_1, u_3, v_2, u_2], G_3[v_1, u_4, v_2, u_3], G_3[v_1, v_2, u_3, u_4]\}$ is a $(3K_{5,2}, G_3)$-design.

Finally, we have all the necessary building blocks to settle the index λ spectrum for G_3.

Theorem 5. For any positive integers $\lambda \geq 2$ and $n \geq 4$, there exists a $(\lambda K_n, G_3)$-design if and only if $12|\lambda(n - 1)$.

Proof. The necessary conditions are established by the fact that the number of edges in G_3 must divide the number of edges in λK_n. To show sufficiency, we use the following 4-case breakdown prescribed by Lemma 1.

Case 1: $\lambda \equiv 0$ (mod 6).

Let $\lambda = 6t$. By Lemma 1, we need to show that G_3 divides $6tK_n$ for $n \geq 4$. By Lemma 4 there exists a $(6tK_n, G_3)$-design. Hence, we can obtain a $(6tK_n, G_3)$-design from t copies of a $(6K_n, G_3)$-design.

Case 2: $\lambda \equiv 1$ or 5 (mod 6).

We note that $\lambda = 5$ is the least possible edge multiplicity that meets the criterion for this case of the proof. Thus $\lambda = 2t + 3$ for some integer $t \geq 1$. By Lemma 1, we need to show that G_3 divides $2t+3K_n$ for $n \equiv 0, 1, 4, 9$ (mod 12). By Lemmas 2 and 3 there exist both a $(2K_n, G_3)$-design and a $(3K_n, G_3)$-design. Hence, we can obtain a $(2t+3K_n, G_3)$-design from t copies of a $(2K_n, G_3)$-design and a single $(3K_n, G_3)$-design.

Case 3: $\lambda \equiv 2$ or 4 (mod 6).

Let $\lambda = 2t$ such that $t \equiv 0$ (mod 3). By Lemma 1, we need to show that G_3 divides $2tK_n$ for $n \equiv 0$ or 1 (mod 3). By Lemma 2 there exists a $(2K_n, G_3)$-design. Hence, we can obtain a $(2tK_n, G_3)$-design from t copies of a $(2K_n, G_3)$-design.

Case 4: $\lambda \equiv 3$ (mod 6).

Let $\lambda = 6t + 3$. By Lemma 1, we need to show that G_3 divides $6t+3K_n$ for $n \equiv 0$ or 1 (mod 4). By Lemma 3 there exists a $(3K_n, G_3)$-design. Hence,
we can obtain a \((6t+3K_n, G_3)\)-design from \(2t + 1\) copies of a \((3K_n, G_3)\)-design.

2.2 \((\lambda K_n, G_4)\)-designs

Again, we begin with some necessary conditions.

Lemma 6. Let \(\lambda \geq 2\) and \(n \geq 4\) be integers. If there exists a \((\lambda K_n, G_4)\)-design, then the following necessarily hold:

1. if \(\text{gcd}(\lambda, 7) = 1\), then \(n \equiv 0\) or \(1 \mod 7\);
2. if \(\text{gcd}(\lambda, 7) = 7\), then \(n \geq 4\).

Proof. Let \(\lambda\) and \(n\) be as stated and suppose there exists a \((\lambda K_n, G_4)\)-design. Since the number of edges in \(G_4\) is 7, we must have that \(7|\lambda n(n-1)/2\), and thus \(14|\lambda n(n-1)\). If \(\text{gcd}(\lambda, 7) = 1\), then \(14|n(n-1)\), and thus \(n \equiv 0, 1, 7, \) or \(8 \mod 14\). If \(\text{gcd}(\lambda, 7) = 7\), then \(2|n(n-1)\), which is always true. ■

From Allen et al. [2], we have the following for index 2.

Lemma 7. There exists a \((2K_n, G_4)\)-design for all \(n \equiv 0\) or \(1 \mod 7\).

Next, we show the only insufficiencies of the necessary conditions in Lemma 6 (i.e., when \(\lambda\) is 3 or 5) before settling the index 7 spectrum for \(G_4\).

Lemma 8. There does not exist a \((3K_n, G_4)\)-design for any \(n\).

Proof. Suppose \(\Delta\) is a \((3K_n, G_4)\)-design. We note that each \(G_4\)-block in \(\Delta\) contains exactly one edge of multiplicity 1 and three edges with multiplicity 2. Since each edge in \(3K_n\) has edge multiplicity 3, each pair of vertices must be incident with at least one edge of multiplicity 1 within a \(G_4\)-block of \(\Delta\). This leads to a contradiction, as the number of vertex pairings in \(3K_n\) (i.e., the size of \(K_n\)) exceeds the number of \(G_4\)-blocks in \(\Delta\). ■

Lemma 9. There does not exist a \((5K_n, G_4)\)-design for any \(n\).

Proof. Suppose \(\Delta\) is a \((5K_n, G_4)\)-design. Then the proof proceeds similarly to that of Lemma 8. ■

Lemma 10. There exists a \((7K_n, G_4)\)-design for all \(n \geq 4\).

Proof. We consider four cases.
Case 1: \(n \equiv 0 \pmod{4} \).
Let \(n = 4x \) and let \(V(7K_{4x}) = \mathbb{Z}_{4x-1} \cup \{\infty\} \). Let
\[
\Delta = \left\{ G_{4x}[\infty, j, 1 + j, 2 + j], G_{4x}[1 + j, j, \infty, 2 + j] : 0 \leq j \leq 4x - 2 \right\}
\]
\[
\cup \left\{ G_{4x}[4i - 1 + j, j, 4i + 1 + j, 1 + j], \right.
\]
\[
G_{4x}[4i + 1 + j, j, 4i - 1 + j, 1 + j] : 1 \leq i \leq x - 1, \ 0 \leq j \leq 4x - 2 \right\}.
\]

It is easily checked that \(\Delta \) is a 1-rotational \((7K_{4x}, G_{4})\)-design.

Case 2: \(n \equiv 1 \pmod{4} \).
Let \(n = 4x + 1 \) and let \(V(7K_{4x+1}) = \mathbb{Z}_{4x+1} \). Let
\[
\Delta = \left\{ G_{4x}[4i - 2 + j, j, 4i + j, 1 + j], G_{4x}[4i + j, j, 4i - 2 + j, 1 + j] : 1 \leq i \leq x, \ 0 \leq j \leq 4x \right\}.
\]

It is easily checked that \(\Delta \) is a cyclic \((7K_{4x+1}, G_{4})\)-design.

Case 3: \(n \equiv 2 \pmod{4} \).
Let \(n = 4x + 2 \) and let \(V(7K_{4x+2}) = \mathbb{Z}_{4x+1} \cup \{\infty\} \). Let
\[
\Delta = \left\{ G_{4x}[\infty, j, 2 + j, 1 + j], G_{4x}[j, 1 + j, \infty, 2 + j], \right.
\]
\[
G_{4x}[2 + j, j, 1 + j, 3 + j] : 0 \leq j \leq 4x \right\}
\]
\[
\cup \left\{ G_{4x}[4i + j, j, 4i + 2 + j, 1 + j], \right.
\]
\[
G_{4x}[4i + 2 + j, j, 4i + j, 1 + j] : 1 \leq i \leq x - 1, \ 0 \leq j \leq 4x \right\}.
\]

It is easily checked that \(\Delta \) is a 1-rotational \((7K_{4x+2}, G_{4})\)-design.

Case 4: \(n \equiv 3 \pmod{4} \).
Let $n = 4x + 3$ and let $V(\overline{7}K_{4x+3}) = Z_{4x+3}$. Let

$$
\Delta = \left\{ G_4[3 + j, j, 2 + j, 1 + j], G_4[3 + j, 1 + j, 2 + j, j],
G_4[3 + j, j, 1 + j, 4 + j] : 0 \leq j \leq 4x + 2 \right\}
$$

$$
\cup \left\{ G_4[4i + 1 + j, j, 4i + 3 + j, 1 + j],
G_4[4i + 3 + j, j, 4i + 1 + j, 1 + j] : 1 \leq i \leq x - 1, 0 \leq j \leq 4x + 2 \right\}.
$$

It is easily checked that Δ is a cyclic $(\overline{7}K_{4x+3}, G_4)$-design.

Finally, we have all the necessary building blocks to settle the index λ spectrum for G_4.

Theorem 11. For positive integers $\lambda \geq 2$ and $n \geq 4$, there exists a $(\lambda K_n, G_4)$-design if and only if $14 | \lambda n(n - 1)$ and $\lambda \not\in \{3, 5\}$.

Proof. The necessary condition that $14 | \lambda n(n - 1)$ is established by the fact that the number of edges in G_4 must divide the number of edges in λK_n. The latter condition is proved in Lemmas 8 and 9. To show sufficiency, we consider three cases.

Case 1: $\lambda \equiv 0 \pmod{7}$.
Let $\lambda = 7t$. By Lemma 6, we need to show that G_4 divides $\overline{7}K_n$ for $n \geq 4$. By Lemma 10 there exists a $(\overline{7}K_n, G_4)$-design. Hence, we can obtain a $(\overline{7}K_n, G_4)$-design from t copies of a $(\overline{7}K_n, G_4)$-design.

Case 2: $\lambda \not\equiv 0 \pmod{7}$ and λ is even.
Let $\lambda = 2t$. By Lemma 6, we need to show that G_4 divides $2tK_n$ for $n \equiv 0$ or 1 (mod 7). By Lemma 7 there exists a $(2tK_n, G_4)$-design. Hence, we can obtain a $(2tK_n, G_4)$-design from t copies of a $(2tK_n, G_4)$-design.

Case 3: $\lambda \not\equiv 0 \pmod{7}$ and λ is odd.
We note that $\lambda = 9$ is the least possible edge multiplicity that meets the criteria for this case of the proof. Thus $\lambda = 2t + 7$ for some integer $t \geq 1$. By Lemma 6, we need to show that G_4 divides $2t+7K_n$ for $n \equiv 0$ or 1 (mod 7). By Lemmas 7 and 10 there exist both a $(2tK_n, G_4)$-design and a $(\overline{7}K_n, G_4)$-design. Hence, we can obtain a $(2t+7K_n, G_4)$-design from t copies of a $(2tK_n, G_4)$-design and a single $(\overline{7}K_n, G_4)$-design.

2.3 $(\lambda K_n, G_5)$-designs

Since G_5 is isomorphic to $\overline{6}C_4$, we first give the index λ spectrum for C_4 (see [11] and [9]).
Theorem 12. For any positive integers λ and n, there exists a $(^3K_n, C_4)$-design if and only if (a) 2 divides $\lambda(n - 1)$, (b) 8 divides $\lambda n(n - 1)$, and (c) $n \geq 4$.

It is easy to see that for all graphs G and K we have $G|K$ if and only if $2^G|2^K$. Thus, we have the following.

Theorem 13. For any positive integers λ and n, there exists a $(^3K_n, G_5)$-design if and only if (a) 4 divides $\lambda(n - 1)$, (b) 16 divides $\lambda n(n - 1)$, (c) $n \geq 4$, and (d) λ is even.

Acknowledgements

This research is supported by grant number A1359300 from the Division of Mathematical Sciences at the National Science Foundation. This work was done while the first, third, fifth, sixth, and seventh authors were participants in REU Site: Mathematics Research Experience for Pre-service and for In-service Teachers at Illinois State University.

References

