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Abstract

Let G with n edges be a 2-regular bipartite graph with one or two
components. We show that there exists a cyclic G-decomposition of
Kpii,n+1 — I, where I is a 1-factor.

1 Introduction

If m and n are integers with m < n, we denote {m, m+1,...,n} by [m,n].
Let N denote the set of nonnegative integers and Z,, the group of integers
modulo n. Let K., have vertex set Z,, and let G be a subgraph of K,,. By
clicking G we mean applying the isomorphism ¢ — i+ 1 to V(G). Likewise,
if we let V(K m) = Zp, X Zz with the obvious vertex bipartition, clicking
a subgraph G of K,, ., means to apply the isomorphism (i, j) — (i + 1, 7)
to V(G).
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Let V(K,,) ={0,1,...,m —1}. The length of an edge e = {i,j} in K,
is min{|é — j|,m — |i — j|}. Note that clicking an edge does not change its
length.

Now, let V(Kpmm) = {0,1,...,m — 1} x Zy. The length of an edge
e={(4,0),(4,1)} in K,y is j— i if j > ¢ and m+ j — ¢, otherwise. As with
K, we note that clicking an edge in K, ,, does not change its length. Also
note that K, ,,, consists of n edges of length ¢ for ¢ € [0, m — 1]. Moreover,
the edges of length ¢ for ¢ € [0,m — 1] form a 1-factor in K, .

Let K and G be graphs with G a subgraph of K. A G-decomposition
of K is a set A = {G1,G>,...,G} of subgraphs of K each of which is
isomorphic to G and such that the edge sets of the graphs G; form a par-
tition of the edge set of K. The elements of A are called G-blocks. Such
a G-decomposition is said to be cyclic if clicking preserves the G-blocks
of A. A G-decomposition of K is also called a (K, G)-design. The study
of (K, G)-designs is known as the study of graph designs or simply of G-
designs.

A G-factor of a graph K is a set of G-blocks whose vertex sets partition
the vertex set of K. A G-factorization is a G-decomposition where the
G-blocks are partitioned into G-factors. A G-factorization is also called a
resolvable G-decomposition.

The following is a commonly investigated question in graph designs.

Question 1. Given a graph G with n edges, for which 2n-reqular graphs
K does there exist a (K,G)-design?

Question 1 is difficult to answer in general. However, it is often the case
that (K241, G)-designs do exist. Similarly, (Ka,42 — I, G)-designs where
I is a 1-factor often exist. If G is bipartite, then the following is also asked.

Question 2. Given a bipartite graph G with n edges, for which n-regular
bipartite graphs K does there exist a (K,G)-design?

In this case, K, , and Ky, t1n+1 — I, where I is a 1-factor, are the
common candidates for K.

Let G be a 2-regular bipartite graph with n edges. It is of interest
to learn whether or not G decomposes K, , and K,;1,4+1 — I. These
questions relate to the complete bipartite graph version of the Oberwolfach
problem. In [5], Piotrowski showed that if n = 0 (mod 4), then there
exists a G-decomposition (actually a G-factorization) of K, /3,/2. Since
K, /2,n/2 decomposes K, 5, the the existence of a G-decomposition of K, ,,
follows in this case. We note however that these decompositions need not
be cyclic. If n =2 (mod 4), then little is known about G-decompositions
of K, or of K, 41n+1 — I, except in a few cases. In [6], Sotteau found
necessary and sufficient conditions for the existence of a C,-decomposition
of Ky,w. The corresponding problem for C),-decompositions of K, , — I



was first investigated in [1] and settled completely in [4]. In [2], cyclic
G-decompositions of K, 1,41 — I are investigated for 2-regular bipartite
graphs G of order n =0 (mod 4), and the following is proved.

Theorem 1. Let G be a 2-regular bipartite graph with n edges where n =0
(mod 4). Then there exists a cyclic G-decomposition of K41 n41—1, where
I is a I-factor.

Finding cyclic G-decomposition of K, 11 pn41 — I when n = 2 (mod 4)
seems to be far more challenging. In this note, we show that if n = 2
(mod 4) and if G consists of at most two cycles, then there exists a cyclic
G-decomposition of Ky 1,n41 — 1.

As is often the case when studying cyclic graph decompositions, graph
labelings provide a convenient and powerful tool. We discuss one of these
labelings next, and we give some notation.

1.1 Bilabelings

For a bipartite graph G with n edges, the simplest way to obtain a G-
decomposition of K, , is to embed G in K, , so that there is exactly one
edge of G of length ¢ for each i € [0,n —1]. Then clicking G a total of n —1
times would yield the desired design cyclically. This result is considered
folklore and is used regularly by researchers in the area. In [3], such an
embedding of G is called a p-bilabeling of G.

Suppose G with n edges has vertex bipartition {4 x {0}, B x {1}}. A
bilabeling of G is a function f: V(G) — N such that f|axqoy and f|pxq1
are injective. Now if f: V(G) — [0,n — 1] is a bilabeling of G, we also
define f: E(G) — [0,n — 1] such that if e = {(a,0),(b,1)} € E(G), then
F(e) = F((b,1) — £((a,0)) i £((5,1)) > F((a,0)) and fle) = [E(G)| +

f((,1)) = f((a,0)), otherwise ( ., f(e) is the length of edge €). Then f
is a p-bilabeling of G if {f ): E )} [0,n — 1]. Thus we have the
following.

Theorem 2. Let G be a bipartite graph of size n. There exists a cyclic
G-decomposition of Ky, 5, if and only if G has a p-bilabeling.

It should be noted that not every bipartite graph admits a p-bilabeling.
The following theorem is stated without proof in [3]. We provide a quick
proof here.

Theorem 3. Let G be a bipartite graph of size n and suppose every vertex
of G has even degree. If G admits a p-bilabeling then n =0 (mod 4).

Proof. Let {A x {0}, B x {1}} be a bipartition of V(G). We note first
that n must be even since every vertex has even degree and |E(G)| =

> acadeg((a,0)). Let f be a p-bilabeling of G. Then 3y fle) =



-1, . . .
Sy i = n(n — 1)/2. Moreover, this sum must be even since n is even,

L 7=0 =

FEe L£((01) = £((@,0)),m + £((b,1)) — £((0,0))} for every cdge ¢ =
{(a,0),(b,1)} in G, and every vertex in G has even degree. Thus 2 divides
n(n —1)/2. Since n is even, the result follows. |

A strategy similar to that of the above proof is used to obtain cyclic G-
decompositions of K141 — I. In this case, we select a length j € [0, n],
and we embed G in K41 ,+1 so that there is exactly one edge of G of
length ¢ for each ¢ € [0,n] \ {j}. The set of all edges of length j forms the
1-factor I. Clicking G a total of n times would yield the desired design
cyclically.

1.2 Some notation

We denote the directed path with vertices xg,x1, ..., 2, where z; is ad-
jacent to x;41, 0 < i < k —1, by (zo,21,...,2k). The first vertex of
this path is xg, the second wvertex is x1, and the last vertex is xj. If
G1 = (zo,z1,...,z;) and G2 = (Yo,Y1,-..,Yyr) are directed paths with
xj = Yo, then by Gy + G2 we mean the path (zo,21,...,25,Y1,Y2,- -, Yk)-

For the remainder of this manuscript, we consider only subgraphs of a
complete bipartite graphs K,, ,, with vertex set {0,1,...,m —1} x Zy and
the obvious vertex bipartition. Furthermore, if m, n, and i are integers
with m < n, we denote {(m,i), (m+1,4),..., (mz)} by [(m7 i), (n,z)]

Let P(k) be the path with &k edges and k + 1 vertices given by ((0,0),
(k,1),(1,0),(k — 1,1),(2,0), (k — 2,1),...,([k/2], [k/2] — Lk:/QJ)) Note
that the set of vertices of this graph is AU B, where A = [(0, 0), (|k/2], O)},
B = [(|k/2] +1,1),(k,1)], and every edge joins a vertex of A to one of B.
Furthermore, the set of lengths of the edges of P(k) is [1, k.

Now let a and b be nonnegative integers with a < b and let us add
(a,0) to all the vertices of A and (b,0) to all the vertices of B. We denote
the resulting graph by P(a,b,k). Note that this graph has the following
properties.

P1 P(a,b, k) is a path with first vertex (a,0) and second vertex (b+k,1).
Tts last vertex is (a + k/2,0) if k is even and (b+ (k+1)/2,1) if k is
odd.

P2 Each edge of P(a,b,k) joins a vertex of A’ = [(a,0), (|k/2] + a,0)]
to a vertex of B’ = [(|k/2] + 14 b,1), (k +b,1)].

P3 The set of edge lengths of P(a,b, k) is [b—a+1,b—a+ k].

Now consider the directed path Q(k) obtained from P(k) replacing each
vertex (i, ) with (k—i,1—j). The new graph is the path ((k, 1), (0,0), (k—
1,1),(1,0),...,(lk/2], |k/2] — [k/2] + 1)). The set of vertices of Q(k) is



AU B, where A = [(0,0), ([k/2] —1,0)] and B = [([k/2],1), (k,1)], and
every edge joins a vertex of A to one of B. The set of edge lengths is still
[1, k.

We again add (a,0) to the vertices of A” and (b,0) to vertices of B”,
where a and b are nonnegative integers with a < b. We denote the resulting
graph by Q(a, b, k). Note that this graph has the following properties.

Q1 Q(a,b, k) is a path with first vertex (k + b, 1). Its last vertex is (b +
k/2,1) if k is even and (a + (k —1)/2,0) if k is odd.

Q2 Each edge of Q(a, b, k) joins a vertex of A’ = [(a,0), (a+[k/2]—1,0)]
to a vertex of B = [(b+ [k/2],1), (b+ k,1)].

Q3 The set of edge lengths of Q(a,b,k)is[b—a+1,b—a+ k].

(3,0) (4,0) (5,0) (1,0) (2,0) (3,0)
(14,1) (13,1) (12,1) (9,1) (8,1) (7,1) (6,1)
P(3,9,5) Q(1,3,6)

Figure 1: Examples of the P(a,b, k) and Q(a,b, k) notation

For ease of notation, we henceforth use ig and i; to denote the vertices
(7,0) and (4, 1), respectively.

2 Main Results

Lemma 4. Let G be an even cycle of length n where n = 2 (mod 4) and
let I be a 1-factor of Ky11 ny1. Then there exists a cyclic G-decomposition

Of Kn+1,n+1 —1I.
Proof. Let G = Cypy2 where r € ZT. Let Cypy0 = G1 +Ga+ ((27)0,01, 0)
where

Gy = P(0,2r +3,2r — 2),

Go=P(r—1,r—1,2r +2).

First, we show that G1 + G2 + ((2r)0,01,0p) is a cycle of length 4r + 2.
Note that by P1, the first vertex of Gy is Op, and the last is (r — 1)p; and



the first vertex of Gy is (r — 1), and the last is (2r)p. For 1 <14 < 2, let A;
and B; denote the sets labeled A’ and B’ in P2 corresponding to the path
G;. Then using P2, we compute

Al = [00,(7’—1)0]7 B = [(3T+3)1,(4T+1)1],
A2 = [(7" — 1)0, (27‘)0], BQ = [(27“ + 1)1, (37’1)1}

Note that V(G1) NV (G2) = {(r — 1)o}; otherwise, G; and Gs are vertex-
disjoint. Therefore, G; + G3 + ((2r)9,01,00) is a cycle of length 4r + 2.

Next, let E; denote the set of edge labels in G; for 1 <1i < 2. By P3,
we have edge labels

Ey =[2r+4,4r + 1],
By = [1,2r + 2]

yielding edge lengths of the same values. Moreover, the path ((2r)g,01,00)
consists of edges with lengths (—2r)* = 2r + 3 and 0. Thus, the edge set of
G has one edge of each length i € [0,4r + 2]\ {4r + 2}. An example of this
labeling is given in Figure 2 with r = 2.

0o 1o 20 30 40

01 91 71 61 51
Figure 2: Cyy with the described labeling

Thus there exists a cyclic G-decomposition of K;,41 41 — I, where [ is
the 1-factor consisting of all edges of length 4r + 2. [ |

Theorem 5. Let G be a 2-regular bipartite graph with n edges and at most
two components. Then there exists a cyclic G-decomposition of Ky 1 n41 —
I, where I is a 1-factor.

Proof. If n = 0 (mod 4), then the result follows from Theorem 1. If G
is a single cycle of (even) length n = 2 (mod 4), the result is proved in
Lemma 4.

Now let G = Cy, U Cyqy2 where r,s € ZT. We consider four cases.



Case 1: r < s.
Let Cyr = G1 + Go + ((27“ + 1)0, 04, 00) and C4S+2 =G3+ Gy + ((27“ +2s+
3)o,21, (2r + 2)¢) where

P(0,2r +4s+3,2r — 1),
Qr+2,r+4s+4,2r — 1),

Gg— P(2r+2,4r +2s+4,2s — 2r — 1),
Gi=Q(r+s+3,r+s+3,2r+2s+1).

First, we show that G1 + G2 + ((2r + 1)o, 01, 00) is a cycle of length 4r,
and G3+ G4+ ((2r+2s5+3)0, 21, (2r+2)p) is a cycle of length 45+ 2. Note
that by P1 and Q1, the first vertex of G is 0p, and the last is (3r+4s+3)1;
the first vertex of Go is (3r + 4s + 3)1, and the last is (2r 4+ 1)o; the first
vertex of G is (2r + 2)g, and the last is (3r + 3s+4)1; and the first vertex
of G4 is (3r +3s+4)1, and the last is (2r +2s+ 3)p. For 1 < i <4, let A;
and B; denote the sets labeled A’ and B’ in P2 and Q2 corresponding to
the path G;. Then using P2 and Q2, we compute

0o, (r — 1)o],

(r =+ 2)o, (21 + 1)0],

(2r +2)o, (r + s+ 1)o],
(r+s+3)o, (2r + 2s + 3)o],

[(3r +4s+3)1, (4r + 45 + 2)41],
[(2r +4s+4)1,(3r +4s+ 3)1],
I( )1, ( )l
[ ) ]

3r+3s+4)1,(2r+4s+ 3)1],

=
[
[
[ (2r 4+ 2s+4)1, (3r +3s+ 4)1].

Note that V(G1) NV (G2) = {(3r+4s+3)1} and V(G3) NV (G4) = {(3r +
3s +4)1}; otherwise, G; and G; are vertex-disjoint for ¢ # j. Therefore,
Gy + Go+ ((2r 4+ 1),01,00) is a cycle of length 4r, and G5 + G4 + ((2r +
2s + 3)o, 21, (2r 4+ 2)) is a cycle of length 4s + 2.

Next, let E; denote the set of edge labels in G; for 1 < i < 4. By P3
and Q3, we have edge lengths

= [2r +4s+4,4r + 4s + 2],

= [4s+3,2r +4s + 1],

= [2r +2s+3,4s + 1],
E47 [1,2r + 25+ 1].

Moreover, the path ((2r+1)g, 01,00) consists of edges with lengths 4r+4s+
3+ (—2r—1) = 2r+4s+2 and 0, and the path ((2r+2s+3)0, 21, (2r+2)o)
consists of edges with lengths 4r +4s+3+ (—2r —2s—1) = 2r+2s+2 and
4dr +4s + 3+ (—2r) = 2r + 4s + 3. Thus, the edge set of G has one edge
of each length i € [0,4r + 45+ 2] \ {4s + 2}. An example of this labeling is
given in Figure 3 with r =1 and s = 2.

Case 2: r = s.
Let Cyr = G1+G2+((2r+1)0,01,00) and Cysq2 = G3+((4r+3)o, 21, (2r+



0o 30 49 6o To 8o 9

01 14, 21 13: 124 11, 104

Figure 3: Cy U Cyp with the described labeling

2)o, (6r + 3)1) where

Gy, = P(0,6r + 3,2r — 1),
Go=Q(r+2,5r +4,2r — 1),
Gs=Q2r+4,2r +4,4r — 1).

First, we show that G + G2 + ((2r + 1)0,01,00) is a cycle of length 4r,
and G3 + ((4r+3)0, 21, (2r+2)o, (6r+3)1) is a cycle of length 45+ 2. Note
that by P1 and Q1, the first vertex of G; is 0g, and the last is (7r + 3)1;
the first vertex of Ga is (7r + 3)1, and the last is (2r + 1)¢; and the first
vertex of G3 is (6r + 3)1, and the last is (4r + 3)p; For 1 < i < 3, let A;
and B; denote the sets labeled A’ and B’ in P2 and Q2 corresponding to
the path G;. Then using P2 and Q2, we compute

A1 = [00, (’I‘ — 1)0], B1 = [(77‘+3)1, (87‘ + 2)1],
Ay = [(T+2)0,(2’F—|—1)0], By = [(6T+4)1,(7T+3)1],
A3 = [(27‘ + 4)0, (47‘ + 3)0], B3 = [(47“ +4)1, (67" + 3)1]

Note that V(G1) N V(G2) = {(7r + 3)1}; otherwise, G; and G; are vertex-
disjoint for i # j. Therefore, G1 + G2+ ((2r+1)g, 01, 0p) is a cycle of length
4r, and Gz + ((4r + 3)0, 21, (21 + 2)0, (67 + 3)1) is a cycle of length 4s + 2.

Next, let F; denote the set of edge labels in G; for 1 < i < 4. By P3
and Q3, we have edge lengths

E, = [6r + 4,8 + 2],
Ey = [4r + 3,6r + 1],
E; =[1,4r — 1].
Moreover, the path ((2r+1)g,01,00) consists of edges with lengths 4r+4s+

3+ (—2r—1) = 6r—+2 and 0, and the path ((4r+3)0, 21, (2r+2)o, (6r+3)1)
consists of edges with lengths 4r +4s +3 4+ (—4r — 1) =4r + 2, 4r + 4s +



3+ (—2r) = 6r + 3, and 4r + 1. Thus, the edge set of G has one edge of
each length ¢ € [0,8r + 2] \ {4r}. An example of this labeling is given in
Figure 4 with r = s = 2.

0o 1o 4o 50 6o 8o ) 100 119

01 181 171 161 21 151 144 13: 121
Figure 4: Cs U C¢ with the described labeling

Case 3: r=s+1.
Let C4S+2 =G+ Gy + ((28 + 2)0, 11,00) and Cy = G3 + ((2’/‘ + 25 +
4)1,(2r + 25 +4)0,31, (25 + 3)o, (4r + 25 + 2)1) where

G1 = P(0,4r +2s+3,2s — 1),
Go=Q(s+2,4r + s+ 2,25+ 1),
G3 = Q(2s+ 5,25 + 6,4r — 4),

First, we show that Gy + G2 + ((2s + 2)o, 11,00) is a cycle of length
4s+2,and Gg+ ((2r +2s+4)1, (2r +2s+4)0, 31, (25 + 3)o, (47 + 25+ 2)1)
is a cycle of length 4r. Note that by P1 and Q1, the first vertex of G is
0o, and the last is (47 +3s+3)1; the first vertex of Gz is (47 +3s+3)1, and
the last is (254 2)o; and the first vertex of Gs is (4r 4+ 2s+2)1, and the last
is (2r +2s+4);. For 1 <i <4, let A; and B; denote the sets labeled A’
and B’ in P2 and Q2 corresponding to the path G;. Then using P2 and
Q2, we compute

Al = [00,(8—1)0], B, = [(47‘—&-384—3)1,(47‘—1—454—2)1},
Ay =[(s+ 2)o, (28 + 2)0], By = [(4r + 25+ 3)1, (4r + 3s + 3)4],
A3 =1[(2s+5)0, (2r + 25 +2)g], Bz = [(2r + 25+ 4)1, (4r + 25 + 2)4].

Note that V(G1) N V(G2) = {(4r + 3s + 3)1}; otherwise, G; and G, are
vertex-disjoint for ¢ # j. Therefore, G1 + G2+ ((2s+2)0, 11, 0p) is a cycle of
length 4542, and G+ ((2r+2s+4)1, (2r+2s+4)0, 31, (25+3)0, (4r+2s5+2)1)
is a cycle of length 4r.

Next, let F; denote the set of edge labels in G; for 1 < i < 3. By P3



and Q3, we have edge lengths

Ey =[4r +2s+4,4r + 4s + 2],
E,=[4r +1,4r +2s + 1],
Es = [2,4r — 3.

Moreover, the path ((2s + 2)o, 11,00) consists of edges with lengths 4r +
4s+3+ (—2s—1) = 4r+2s+ 2 and 1, and the path ((2r +2s+4), (2r +
2s+4)0,31, (254 3)0, (47 4+ 25+ 2)1) consists of edges with lengths 0, 4r 4+
4s4+34+(=2r—2s—1) =2r+2s+2 =4r, dr+4s+3+(—2s) = 4r+2s+3,
and 4r — 1. Thus, the edge set of G has one edge of each length i €
[0,4r 4+ 4s + 2] \ {4r — 2}. An example of this labeling is given in Figure 5
with r =2 and s = 1.

00 30 40 5() 70 80 100

1 144 13: 31 124 11, 104

Figure 5: Cg U Cg with the described labeling

Case 4: r > s+ 1.
Let Cysyo = G1+Go+ ((28+2)0,11,00) and Cyr = Gs+ G4+ (25 + 21 +
4)1,(2s 4+ 2r +4)o, 31, (25 + 3)¢) where

P(0,4r +2s+3,2s — 1),
Q(s+2,4r + s+ 2,25+ 1),
P(2s+3,2r +4s+5,2r — 2s — 3),
Qr+s+3,r+s+4,2s+2r).

G1
Ga
Gs
G4

First, we show that G1 + G + ((2s + 2)0, 11,00) is a cycle of length 4s + 2,
and Gz + G4 + ((25 4+ 2r 4+ 4)1, (25 + 2r + 4)0,31, (25 + 3)o) is a cycle of
length 4r. Note that by P1 and Q1, the first vertex of Gy is 0g, and the
last is (4r + 3s + 3)1; the first vertex of Gs is (4r + 3s + 3)1, and the last is
(25 4 2)0; the first vertex of G3 is (2s + 3)g, and the last is (37 + 3s + 4)q;
and the first vertex of G4 is (3r + 3s + 4)1, and the last is (2r + 2s + 4);.
For 1 <i < 4, let A; and B, denote the sets labeled A’ and B’ in P2 and

10



Q2 corresponding to the path G;. Then using P2 and Q2, we compute

0o, (s = 1)o],

(s 420, (25 + 2)o],
(25 + 3)o, (r 4+ s+ 1)g],
(r+s43)o, (28 + 21 + 2)0],

[(4r + 3s + 3)1, (4r + 4s + 2)41],
[(4r + 2s + 3)1, (47 + 3s + 3)1],
[( )1 ( ]
[ )1, ( )l

3r+3s+4)1,(4r + 2s + 2)1],

=
[
[
= (2r +2s+4)1,(3r + 3s + 4)4].

Note that V(G1) NV (G2) = {(4r+3s+3)1} and V(G3) NV (Gy) = {(3r+
3s + 4)1}; otherwise, G; and G, are vertex-disjoint for i # j. Therefore,
G1+G2+((25+2)0, 11,00) is a cycle of length 4s+2, and G+ G4+ ((25+
2r +4)1, (28 4+ 2r + 4)0, 31, (25 + 3)p) is a cycle of length 4r.

Next, let F; denote the set of edge labels in G; for 1 < i < 4. By P3
and Q3, we have edge lengths

= [4r + 2s + 4,4r + 4s + 2],

= [4r +1,4r 4+ 2s + 1],

= [2s+4 2r + 3,4r — 1],
E4— (2,25 4 2r 4+ 1].

Moreover, the path ((2s + 2)g, 11,00) consists of edges with lengths 4r +
4s+3+(—2s—1) = 4r+2s+2 and 1, and the path ((2s+2r+4)1, (2s+2r+
4)0,31, (25+3)p) consists of edges with lengths 0, 4r+45+3+(—2r—2s—1) =
2r+2s+2, and 4r +4s+ 3+ (—2s) = 4r 4+ 2s + 3. Thus, the edge set of G
has one edge of each length i € [0,4r +4s + 2] \ {4r}. An example of this
labeling is given in Figure 6 with » =3 and s = 1.

0 30 4o 50 7o 80 9 109 12¢
14 18 174 31 161 151 144 131 12
Figure 6: Cg U C12 with the described labeling

Thus in each of the four cases, there exists a cyclic G-decomposition of
K141 — I, where I is a 1-factor.
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