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Abstract

Let G with n edges be a 2-regular bipartite graph with one or two
components. We show that there exists a cyclic G-decomposition of
Kn+1,n+1 − I, where I is a 1-factor.

1 Introduction

If m and n are integers with m ≤ n, we denote {m,m+ 1, . . . , n} by [m,n].
Let N denote the set of nonnegative integers and Zn the group of integers
modulo n. Let Km have vertex set Zm and let G be a subgraph of Km. By
clicking G we mean applying the isomorphism i 7→ i+1 to V (G). Likewise,
if we let V (Km,m) = Zm × Z2 with the obvious vertex bipartition, clicking
a subgraph G of Km,m means to apply the isomorphism (i, j) 7→ (i + 1, j)
to V (G).

∗Research supported by National Science Foundation Grant No. A1063038
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Let V (Km) = {0, 1, . . . ,m− 1}. The length of an edge e = {i, j} in Km

is min{|i− j|,m− |i− j|}. Note that clicking an edge does not change its
length.

Now, let V (Km,m) = {0, 1, . . . ,m − 1} × Z2. The length of an edge
e = {(i, 0), (j, 1)} in Km,m is j− i if j ≥ i and m+ j− i, otherwise. As with
Km, we note that clicking an edge in Km,m does not change its length. Also
note that Km,m consists of n edges of length i for i ∈ [0,m− 1]. Moreover,
the edges of length i for i ∈ [0,m− 1] form a 1-factor in Km,m.

Let K and G be graphs with G a subgraph of K. A G-decomposition
of K is a set ∆ = {G1, G2, . . . , Gt} of subgraphs of K each of which is
isomorphic to G and such that the edge sets of the graphs Gi form a par-
tition of the edge set of K. The elements of ∆ are called G-blocks. Such
a G-decomposition is said to be cyclic if clicking preserves the G-blocks
of ∆. A G-decomposition of K is also called a (K,G)-design. The study
of (K,G)-designs is known as the study of graph designs or simply of G-
designs.

A G-factor of a graph K is a set of G-blocks whose vertex sets partition
the vertex set of K. A G-factorization is a G-decomposition where the
G-blocks are partitioned into G-factors. A G-factorization is also called a
resolvable G-decomposition.

The following is a commonly investigated question in graph designs.

Question 1. Given a graph G with n edges, for which 2n-regular graphs
K does there exist a (K,G)-design?

Question 1 is difficult to answer in general. However, it is often the case
that (K2n+1, G)-designs do exist. Similarly, (K2n+2 − I,G)-designs where
I is a 1-factor often exist. If G is bipartite, then the following is also asked.

Question 2. Given a bipartite graph G with n edges, for which n-regular
bipartite graphs K does there exist a (K,G)-design?

In this case, Kn,n and Kn+1,n+1 − I, where I is a 1-factor, are the
common candidates for K.

Let G be a 2-regular bipartite graph with n edges. It is of interest
to learn whether or not G decomposes Kn,n and Kn+1,n+1 − I. These
questions relate to the complete bipartite graph version of the Oberwolfach
problem. In [5], Piotrowski showed that if n ≡ 0 (mod 4), then there
exists a G-decomposition (actually a G-factorization) of Kn/2,n/2. Since
Kn/2,n/2 decomposes Kn,n, the the existence of a G-decomposition of Kn,n

follows in this case. We note however that these decompositions need not
be cyclic. If n ≡ 2 (mod 4), then little is known about G-decompositions
of Kn,n or of Kn+1,n+1 − I, except in a few cases. In [6], Sotteau found
necessary and sufficient conditions for the existence of a Cn-decomposition
of Kv,w. The corresponding problem for Cn-decompositions of Kv,v − I
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was first investigated in [1] and settled completely in [4]. In [2], cyclic
G-decompositions of Kn+1,n+1 − I are investigated for 2-regular bipartite
graphs G of order n ≡ 0 (mod 4), and the following is proved.

Theorem 1. Let G be a 2-regular bipartite graph with n edges where n ≡ 0
(mod 4). Then there exists a cyclic G-decomposition of Kn+1,n+1−I, where
I is a 1-factor.

Finding cyclic G-decomposition of Kn+1,n+1 − I when n ≡ 2 (mod 4)
seems to be far more challenging. In this note, we show that if n ≡ 2
(mod 4) and if G consists of at most two cycles, then there exists a cyclic
G-decomposition of Kn+1,n+1 − I.

As is often the case when studying cyclic graph decompositions, graph
labelings provide a convenient and powerful tool. We discuss one of these
labelings next, and we give some notation.

1.1 Bilabelings

For a bipartite graph G with n edges, the simplest way to obtain a G-
decomposition of Kn,n is to embed G in Kn,n so that there is exactly one
edge of G of length i for each i ∈ [0, n− 1]. Then clicking G a total of n− 1
times would yield the desired design cyclically. This result is considered
folklore and is used regularly by researchers in the area. In [3], such an
embedding of G is called a ρ-bilabeling of G.

Suppose G with n edges has vertex bipartition
{
A× {0}, B × {1}

}
. A

bilabeling of G is a function f : V (G)→ N such that f |A×{0} and f |B×{1}
are injective. Now if f : V (G) → [0, n − 1] is a bilabeling of G, we also
define f̄ : E(G) → [0, n − 1] such that if e = {(a, 0), (b, 1)} ∈ E(G), then
f̄(e) = f

(
(b, 1)

)
− f

(
(a, 0)

)
if f

(
(b, 1)

)
≥ f

(
(a, 0)

)
and f̄(e) = |E(G)| +

f
(
(b, 1)

)
− f

(
(a, 0)

)
, otherwise (i.e., f̄(e) is the length of edge e). Then f

is a ρ-bilabeling of G if
{
f̄(e) : e ∈ E(G)

}
= [0, n − 1]. Thus we have the

following.

Theorem 2. Let G be a bipartite graph of size n. There exists a cyclic
G-decomposition of Kn,n if and only if G has a ρ-bilabeling.

It should be noted that not every bipartite graph admits a ρ-bilabeling.
The following theorem is stated without proof in [3]. We provide a quick
proof here.

Theorem 3. Let G be a bipartite graph of size n and suppose every vertex
of G has even degree. If G admits a ρ-bilabeling then n ≡ 0 (mod 4).

Proof. Let
{
A × {0}, B × {1}

}
be a bipartition of V (G). We note first

that n must be even since every vertex has even degree and |E(G)| =∑
a∈A deg

(
(a, 0)

)
. Let f be a ρ-bilabeling of G. Then

∑
e∈E(G) f̄(e) =
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∑n−1
i=0 i = n(n − 1)/2. Moreover, this sum must be even since n is even,

f̄(e) ∈
{
f
(
(b, 1)

)
− f

(
(a, 0)

)
, n + f

(
(b, 1)

)
− f

(
(a, 0)

)}
for every edge e =

{(a, 0), (b, 1)} in G, and every vertex in G has even degree. Thus 2 divides

n(n− 1)/2. Since n is even, the result follows.

A strategy similar to that of the above proof is used to obtain cyclic G-
decompositions of Kn+1,n+1 − I. In this case, we select a length j ∈ [0, n],
and we embed G in Kn+1,n+1 so that there is exactly one edge of G of
length i for each i ∈ [0, n] \ {j}. The set of all edges of length j forms the
1-factor I. Clicking G a total of n times would yield the desired design
cyclically.

1.2 Some notation

We denote the directed path with vertices x0, x1, . . . , xk, where xi is ad-
jacent to xi+1, 0 ≤ i ≤ k − 1, by (x0, x1, . . . , xk). The first vertex of
this path is x0, the second vertex is x1, and the last vertex is xk. If
G1 = (x0, x1, . . . , xj) and G2 = (y0, y1, . . . , yk) are directed paths with
xj = y0, then by G1 +G2 we mean the path (x0, x1, . . . , xj , y1, y2, . . . , yk).

For the remainder of this manuscript, we consider only subgraphs of a
complete bipartite graphs Km,m with vertex set {0, 1, . . . ,m− 1}×Z2 and
the obvious vertex bipartition. Furthermore, if m, n, and i are integers
with m ≤ n, we denote

{
(m, i), (m+ 1, i), . . . , (n, i)

}
by
[
(m, i), (n, i)

]
Let P (k) be the path with k edges and k + 1 vertices given by

(
(0, 0),

(k, 1), (1, 0), (k − 1, 1), (2, 0), (k − 2, 1), . . . , (dk/2e, dk/2e − bk/2c)
)
. Note

that the set of vertices of this graph is A∪B, where A =
[
(0, 0), (bk/2c, 0)

]
,

B =
[
(bk/2c+ 1, 1), (k, 1)

]
, and every edge joins a vertex of A to one of B.

Furthermore, the set of lengths of the edges of P (k) is [1, k].
Now let a and b be nonnegative integers with a ≤ b and let us add

(a, 0) to all the vertices of A and (b, 0) to all the vertices of B. We denote
the resulting graph by P (a, b, k). Note that this graph has the following
properties.

P1 P (a, b, k) is a path with first vertex (a, 0) and second vertex (b+k, 1).
Its last vertex is (a+ k/2, 0) if k is even and (b+ (k + 1)/2, 1) if k is
odd.

P2 Each edge of P (a, b, k) joins a vertex of A′ =
[
(a, 0), (bk/2c + a, 0)

]
to a vertex of B′ =

[
(bk/2c+ 1 + b, 1), (k + b, 1)

]
.

P3 The set of edge lengths of P (a, b, k) is [b− a+ 1, b− a+ k].

Now consider the directed path Q(k) obtained from P (k) replacing each
vertex (i, j) with (k−i, 1−j). The new graph is the path

(
(k, 1), (0, 0), (k−

1, 1), (1, 0), . . . , (bk/2c, bk/2c − dk/2e + 1)
)
. The set of vertices of Q(k) is

4



A ∪ B, where A =
[
(0, 0), (dk/2e − 1, 0)

]
and B =

[
(dk/2e, 1), (k, 1)

]
, and

every edge joins a vertex of A to one of B. The set of edge lengths is still
[1, k].

We again add (a, 0) to the vertices of A′′ and (b, 0) to vertices of B′′,
where a and b are nonnegative integers with a ≤ b. We denote the resulting
graph by Q(a, b, k). Note that this graph has the following properties.

Q1 Q(a, b, k) is a path with first vertex (k + b, 1). Its last vertex is (b +
k/2, 1) if k is even and (a+ (k − 1)/2, 0) if k is odd.

Q2 Each edge of Q(a, b, k) joins a vertex of A′ =
[
(a, 0), (a+dk/2e−1, 0)

]
to a vertex of B =

[
(b+ dk/2e, 1), (b+ k, 1)

]
.

Q3 The set of edge lengths of Q(a, b, k) is [b− a+ 1, b− a+ k].

(3, 0) (4, 0) (5, 0)

(14, 1) (13, 1) (12, 1)

(1, 0) (2, 0) (3, 0)

(9, 1) (8, 1) (7, 1) (6, 1)

P (3, 9, 5) Q(1, 3, 6)

Figure 1: Examples of the P (a, b, k) and Q(a, b, k) notation

For ease of notation, we henceforth use i0 and i1 to denote the vertices
(i, 0) and (i, 1), respectively.

2 Main Results

Lemma 4. Let G be an even cycle of length n where n ≡ 2 (mod 4) and
let I be a 1-factor of Kn+1,n+1. Then there exists a cyclic G-decomposition
of Kn+1,n+1 − I.

Proof. Let G = C4r+2 where r ∈ Z+. Let C4r+2 = G1 +G2 + ((2r)0, 01, 00)
where

G1 = P (0, 2r + 3, 2r − 2),

G2 = P (r − 1, r − 1, 2r + 2).

First, we show that G1 +G2 + ((2r)0, 01, 00) is a cycle of length 4r+ 2.
Note that by P1, the first vertex of G1 is 00, and the last is (r − 1)0; and
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the first vertex of G2 is (r− 1)0, and the last is (2r)0. For 1 ≤ i ≤ 2, let Ai

and Bi denote the sets labeled A′ and B′ in P2 corresponding to the path
Gi. Then using P2, we compute

A1 = [00, (r − 1)0], B1 = [(3r + 3)1, (4r + 1)1],

A2 = [(r − 1)0, (2r)0], B2 = [(2r + 1)1, (3r1)1].

Note that V (G1) ∩ V (G2) = {(r − 1)0}; otherwise, G1 and G2 are vertex-
disjoint. Therefore, G1 +G2 + ((2r)0, 01, 00) is a cycle of length 4r + 2.

Next, let Ei denote the set of edge labels in Gi for 1 ≤ i ≤ 2. By P3,
we have edge labels

E1 = [2r + 4, 4r + 1],

E2 = [1, 2r + 2]

yielding edge lengths of the same values. Moreover, the path ((2r)0, 01, 00)
consists of edges with lengths (−2r)∗ = 2r+ 3 and 0. Thus, the edge set of
G has one edge of each length i ∈ [0, 4r+ 2] \ {4r+ 2}. An example of this
labeling is given in Figure 2 with r = 2.

00 10 20 30 40

01 91 71 61 51

Figure 2: C10 with the described labeling

Thus there exists a cyclic G-decomposition of Kn+1,n+1 − I, where I is

the 1-factor consisting of all edges of length 4r + 2.

Theorem 5. Let G be a 2-regular bipartite graph with n edges and at most
two components. Then there exists a cyclic G-decomposition of Kn+1,n+1−
I, where I is a 1-factor.

Proof. If n ≡ 0 (mod 4), then the result follows from Theorem 1. If G
is a single cycle of (even) length n ≡ 2 (mod 4), the result is proved in
Lemma 4.

Now let G = C4r ∪ C4s+2 where r, s ∈ Z+. We consider four cases.
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Case 1: r < s.
Let C4r = G1 +G2 + ((2r+ 1)0, 01, 00) and C4s+2 = G3 +G4 + ((2r+ 2s+
3)0, 21, (2r + 2)0) where

G1 = P (0, 2r + 4s+ 3, 2r − 1),

G2 = Q(r + 2, r + 4s+ 4, 2r − 1),

G3 = P (2r + 2, 4r + 2s+ 4, 2s− 2r − 1),

G4 = Q(r + s+ 3, r + s+ 3, 2r + 2s+ 1).

First, we show that G1 +G2 + ((2r+ 1)0, 01, 00) is a cycle of length 4r,
and G3 +G4 +((2r+2s+3)0, 21, (2r+2)0) is a cycle of length 4s+2. Note
that by P1 and Q1, the first vertex of G1 is 00, and the last is (3r+4s+3)1;
the first vertex of G2 is (3r + 4s + 3)1, and the last is (2r + 1)0; the first
vertex of G3 is (2r+ 2)0, and the last is (3r+ 3s+ 4)1; and the first vertex
of G4 is (3r+ 3s+ 4)1, and the last is (2r+ 2s+ 3)0. For 1 ≤ i ≤ 4, let Ai

and Bi denote the sets labeled A′ and B′ in P2 and Q2 corresponding to
the path Gi. Then using P2 and Q2, we compute

A1 = [00, (r − 1)0], B1 = [(3r + 4s+ 3)1, (4r + 4s+ 2)1],

A2 = [(r + 2)0, (2r + 1)0], B2 = [(2r + 4s+ 4)1, (3r + 4s+ 3)1],

A3 = [(2r + 2)0, (r + s+ 1)0], B3 = [(3r + 3s+ 4)1, (2r + 4s+ 3)1],

A4 = [(r + s+ 3)0, (2r + 2s+ 3)0], B4 = [(2r + 2s+ 4)1, (3r + 3s+ 4)1].

Note that V (G1)∩ V (G2) = {(3r+ 4s+ 3)1} and V (G3)∩ V (G4) = {(3r+
3s + 4)1}; otherwise, Gi and Gj are vertex-disjoint for i 6= j. Therefore,
G1 +G2 + ((2r + 1)0, 01, 00) is a cycle of length 4r, and G3 +G4 + ((2r +
2s+ 3)0, 21, (2r + 2)0) is a cycle of length 4s+ 2.

Next, let Ei denote the set of edge labels in Gi for 1 ≤ i ≤ 4. By P3
and Q3, we have edge lengths

E1 = [2r + 4s+ 4, 4r + 4s+ 2],

E2 = [4s+ 3, 2r + 4s+ 1],

E3 = [2r + 2s+ 3, 4s+ 1],

E4 = [1, 2r + 2s+ 1].

Moreover, the path ((2r+1)0, 01, 00) consists of edges with lengths 4r+4s+
3+(−2r−1) = 2r+4s+2 and 0, and the path ((2r+2s+3)0, 21, (2r+2)0)
consists of edges with lengths 4r+4s+3+(−2r−2s−1) = 2r+2s+2 and
4r + 4s + 3 + (−2r) = 2r + 4s + 3. Thus, the edge set of G has one edge
of each length i ∈ [0, 4r+ 4s+ 2] \ {4s+ 2}. An example of this labeling is
given in Figure 3 with r = 1 and s = 2.

Case 2: r = s.
Let C4r = G1+G2+((2r+1)0, 01, 00) and C4s+2 = G3+((4r+3)0, 21, (2r+
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00 30 40 60 70

01 141 21 131 121 111

80

101

90

Figure 3: C4 ∪ C10 with the described labeling

2)0, (6r + 3)1) where

G1 = P (0, 6r + 3, 2r − 1),

G2 = Q(r + 2, 5r + 4, 2r − 1),

G3 = Q(2r + 4, 2r + 4, 4r − 1).

First, we show that G1 +G2 + ((2r+ 1)0, 01, 00) is a cycle of length 4r,
and G3 + ((4r+ 3)0, 21, (2r+ 2)0, (6r+ 3)1) is a cycle of length 4s+ 2. Note
that by P1 and Q1, the first vertex of G1 is 00, and the last is (7r + 3)1;
the first vertex of G2 is (7r + 3)1, and the last is (2r + 1)0; and the first
vertex of G3 is (6r + 3)1, and the last is (4r + 3)0; For 1 ≤ i ≤ 3, let Ai

and Bi denote the sets labeled A′ and B′ in P2 and Q2 corresponding to
the path Gi. Then using P2 and Q2, we compute

A1 = [00, (r − 1)0], B1 = [(7r + 3)1, (8r + 2)1],

A2 = [(r + 2)0, (2r + 1)0], B2 = [(6r + 4)1, (7r + 3)1],

A3 = [(2r + 4)0, (4r + 3)0], B3 = [(4r + 4)1, (6r + 3)1].

Note that V (G1) ∩ V (G2) = {(7r + 3)1}; otherwise, Gi and Gj are vertex-
disjoint for i 6= j. Therefore, G1+G2+((2r+1)0, 01, 00) is a cycle of length
4r, and G3 + ((4r + 3)0, 21, (2r + 2)0, (6r + 3)1) is a cycle of length 4s+ 2.

Next, let Ei denote the set of edge labels in Gi for 1 ≤ i ≤ 4. By P3
and Q3, we have edge lengths

E1 = [6r + 4, 8r + 2],

E2 = [4r + 3, 6r + 1],

E3 = [1, 4r − 1].

Moreover, the path ((2r+1)0, 01, 00) consists of edges with lengths 4r+4s+
3+(−2r−1) = 6r+2 and 0, and the path ((4r+3)0, 21, (2r+2)0, (6r+3)1)
consists of edges with lengths 4r + 4s+ 3 + (−4r − 1) = 4r + 2, 4r + 4s+
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3 + (−2r) = 6r + 3, and 4r + 1. Thus, the edge set of G has one edge of
each length i ∈ [0, 8r + 2] \ {4r}. An example of this labeling is given in
Figure 4 with r = s = 2.

00 10 40 50

01 181 171 161

60 80 90

21 151 141 131

100

121

110

Figure 4: C8 ∪ C10 with the described labeling

Case 3: r = s+ 1.
Let C4s+2 = G1 + G2 + ((2s + 2)0, 11, 00) and C4r = G3 + ((2r + 2s +
4)1, (2r + 2s+ 4)0, 31, (2s+ 3)0, (4r + 2s+ 2)1) where

G1 = P (0, 4r + 2s+ 3, 2s− 1),

G2 = Q(s+ 2, 4r + s+ 2, 2s+ 1),

G3 = Q(2s+ 5, 2s+ 6, 4r − 4),

First, we show that G1 + G2 + ((2s + 2)0, 11, 00) is a cycle of length
4s+ 2, and G3 + ((2r+ 2s+ 4)1, (2r+ 2s+ 4)0, 31, (2s+ 3)0, (4r+ 2s+ 2)1)
is a cycle of length 4r. Note that by P1 and Q1, the first vertex of G1 is
00, and the last is (4r+3s+3)1; the first vertex of G2 is (4r+3s+3)1, and
the last is (2s+ 2)0; and the first vertex of G3 is (4r+ 2s+ 2)1, and the last
is (2r + 2s + 4)1. For 1 ≤ i ≤ 4, let Ai and Bi denote the sets labeled A′

and B′ in P2 and Q2 corresponding to the path Gi. Then using P2 and
Q2, we compute

A1 = [00, (s− 1)0], B1 = [(4r + 3s+ 3)1, (4r + 4s+ 2)1],

A2 = [(s+ 2)0, (2s+ 2)0], B2 = [(4r + 2s+ 3)1, (4r + 3s+ 3)1],

A3 = [(2s+ 5)0, (2r + 2s+ 2)0], B3 = [(2r + 2s+ 4)1, (4r + 2s+ 2)1].

Note that V (G1) ∩ V (G2) = {(4r + 3s + 3)1}; otherwise, Gi and Gj are
vertex-disjoint for i 6= j. Therefore, G1+G2+((2s+2)0, 11, 00) is a cycle of
length 4s+2, andG3+((2r+2s+4)1, (2r+2s+4)0, 31, (2s+3)0, (4r+2s+2)1)
is a cycle of length 4r.

Next, let Ei denote the set of edge labels in Gi for 1 ≤ i ≤ 3. By P3
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and Q3, we have edge lengths

E1 = [4r + 2s+ 4, 4r + 4s+ 2],

E2 = [4r + 1, 4r + 2s+ 1],

E3 = [2, 4r − 3].

Moreover, the path ((2s + 2)0, 11, 00) consists of edges with lengths 4r +
4s+ 3 + (−2s− 1) = 4r+ 2s+ 2 and 1, and the path ((2r+ 2s+ 4)1, (2r+
2s+ 4)0, 31, (2s+ 3)0, (4r+ 2s+ 2)1) consists of edges with lengths 0, 4r+
4s+3+(−2r−2s−1) = 2r+2s+2 = 4r, 4r+4s+3+(−2s) = 4r+2s+3,
and 4r − 1. Thus, the edge set of G has one edge of each length i ∈
[0, 4r + 4s+ 2] \ {4r − 2}. An example of this labeling is given in Figure 5
with r = 2 and s = 1.

00 30 40

13111 141

50 70 80

31 121 111 101

100

Figure 5: C6 ∪ C8 with the described labeling

Case 4: r > s+ 1.
Let C4s+2 = G1 +G2 + ((2s+ 2)0, 11, 00) and C4r = G3 +G4 + ((2s+ 2r+
4)1, (2s+ 2r + 4)0, 31, (2s+ 3)0) where

G1 = P (0, 4r + 2s+ 3, 2s− 1),

G2 = Q(s+ 2, 4r + s+ 2, 2s+ 1),

G3 = P (2s+ 3, 2r + 4s+ 5, 2r − 2s− 3),

G4 = Q(r + s+ 3, r + s+ 4, 2s+ 2r).

First, we show that G1 +G2 + ((2s+ 2)0, 11, 00) is a cycle of length 4s+ 2,
and G3 + G4 + ((2s + 2r + 4)1, (2s + 2r + 4)0, 31, (2s + 3)0) is a cycle of
length 4r. Note that by P1 and Q1, the first vertex of G1 is 00, and the
last is (4r+ 3s+ 3)1; the first vertex of G2 is (4r+ 3s+ 3)1, and the last is
(2s+ 2)0; the first vertex of G3 is (2s+ 3)0, and the last is (3r + 3s+ 4)1;
and the first vertex of G4 is (3r + 3s + 4)1, and the last is (2r + 2s + 4)1.
For 1 ≤ i ≤ 4, let Ai and Bi denote the sets labeled A′ and B′ in P2 and
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Q2 corresponding to the path Gi. Then using P2 and Q2, we compute

A1 = [00, (s− 1)0], B1 = [(4r + 3s+ 3)1, (4r + 4s+ 2)1],

A2 = [(s+ 2)0, (2s+ 2)0], B2 = [(4r + 2s+ 3)1, (4r + 3s+ 3)1],

A3 = [(2s+ 3)0, (r + s+ 1)0], B3 = [(3r + 3s+ 4)1, (4r + 2s+ 2)1],

A4 = [(r + s+ 3)0, (2s+ 2r + 2)0], B4 = [(2r + 2s+ 4)1, (3r + 3s+ 4)1].

Note that V (G1)∩ V (G2) = {(4r+ 3s+ 3)1} and V (G3)∩ V (G4) = {(3r+
3s + 4)1}; otherwise, Gi and Gj are vertex-disjoint for i 6= j. Therefore,
G1 +G2 +((2s+2)0, 11, 00) is a cycle of length 4s+2, and G3 +G4 +((2s+
2r + 4)1, (2s+ 2r + 4)0, 31, (2s+ 3)0) is a cycle of length 4r.

Next, let Ei denote the set of edge labels in Gi for 1 ≤ i ≤ 4. By P3
and Q3, we have edge lengths

E1 = [4r + 2s+ 4, 4r + 4s+ 2],

E2 = [4r + 1, 4r + 2s+ 1],

E3 = [2s+ 2r + 3, 4r − 1],

E4 = [2, 2s+ 2r + 1].

Moreover, the path ((2s + 2)0, 11, 00) consists of edges with lengths 4r +
4s+3+(−2s−1) = 4r+2s+2 and 1, and the path ((2s+2r+4)1, (2s+2r+
4)0, 31, (2s+3)0) consists of edges with lengths 0, 4r+4s+3+(−2r−2s−1) =
2r+ 2s+ 2, and 4r+ 4s+ 3 + (−2s) = 4r+ 2s+ 3. Thus, the edge set of G
has one edge of each length i ∈ [0, 4r + 4s+ 2] \ {4r}. An example of this
labeling is given in Figure 6 with r = 3 and s = 1.

00 30 40

17111 181

50 70 80

31 161 151 141

90

131

100

121

120

Figure 6: C6 ∪ C12 with the described labeling

Thus in each of the four cases, there exists a cyclic G-decomposition of
Kn+1,n+1 − I, where I is a 1-factor.
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