BIOSTATISTICS (BSC 490 & 420.27)

Fall 2019				
Instructor: Steven Juliano	Of	fice: 335 FSA	Phone: 438-2642	
e-mail: <u>sajulian@ilstu.edu</u> Web: <u>https://about.illinoisstate.edu/sajulian/pages/default.aspx</u>				
Lecture: MWF 9:00 – 9:50 AM FSA 129	Laboratory: Th 1:00 - 3:50 PM SLB 121			ffice Hours : F 10:00-11:00AM, T 1:00-2:00 PM, & by Appointment
Teaching Assistant: Ian Rines		Office: 143 FSA		Office hours: T 1:30 – 3:00 PM
a maile igninas ailstu adu		Dhono: 128 5128		in SLB 121, and by appointment

Phone: 438-5438

TEXTS: *Experimental design and Data analysis for Biologists.* 2002. GP Quinn & MJ Keough. 2002 Cambridge Univ. Press *Biostatistics Manual.* 2018. S. A. Juliano [Files provided]

e-mail: igrines@ilstu.edu

COURSE GOALS: This course is an introduction to applied statistics. The ideas and methods discussed will be those most relevant to biologists in general. You will acquire a working knowledge of basic statistical methods, and will be able to determine which procedures are most appropriate for a given circumstance. All of the statistical techniques relevant to biologists cannot be covered in one semester, however, once you have mastered the material in this course, you will be better equipped to understand and use more advanced statistical methods.

In the laboratory for this course you will gain experience in use of the *SAS 9.4* computer package for statistics. There are a number of good statistical packages available (e.g., *R*, *SPSS*, *JMP*), and some of you may already know how to use some of these. I will give examples and explain how to do things in *SAS*, and all of you will do the assignments using *SAS*. By learning enough about general aspects of statistical computation and interpretation, you will be able to generalize to other packages if you so choose.

GRADE: Although BSC 490 and 420.27 are nominally two different courses, in reality they are part of a single course. You will receive the same grade in both courses. Course grades will be determined as follows

Course Component		Percent of Final Grade		Total Score	Yields Final Grade
Exam I		17.5%	Τ	<u>></u> 85%	А
Exam II		17.5%		75 - 85%	В
Cumulative Final Exam	(in class)	20.0%		65 - 75%	С
	(take home)	10.0%		55 - 65%	D
11 Homework Assignmen	its	35.0%		<55%	F

Homework will involve using *SAS* to do analyses of statistical problems. Specific instructions on how to write up the report and what to include will be provided. In addition to homework assignments, I will give sets of study problems that will **not** be graded, but which will help you to learn the material. Parts of exams will be open book/open note/use the computer and will contain analysis questions. Some exams will include take-home sections, which will be similar to the homework assignments. Homework and take-home exams **will not be accepted late**. Turning in an incomplete homework assignment will produce a **much better** grade and learning experience than will turning in nothing at all. The 11 homework assignments, and **tentative** due dates are:

Assignment	Topics	Tentative Due Date (by 11:59 PM)
1	Summary Statistics	Thursday 29 August
2	Simulating data & Generating Random Numbers	Thursday 5 September
3	One and two sample tests	Thursday 12 September
4	One-way Fixed effects Analysis of Variance	Thursday 26 September
5	One-way Random effects Analysis of Variance	Thursday 3 October
6	Two-way Factorial Analysis of Variance	Thursday 17 October
7	Mixed model Analysis of Variance	Thursday 24 October
8	Two-stage nested Analysis of Variance	Thursday 7 November
9	Generalized Linear modesl for ANOVA	Thursday 14 November
10	Linear & Multiple Regression	Thursday 21 November
11	Analysis of Covariance	Thursday 5 December

COURSE OUTLINE & READINGS

Торіс	Reading Assignment (Quinn & Keough 2002 <i>ED&DAFB</i>)	Торіс	Reading Assignment (Quinn & Keough 2002 <i>ED&DAFB</i>)		
Introduction	 pp. 1-7	Analysis of Variance			
Kinds of variables		Blocked designs	pp. 262-300		
Frequency distributions	pp. 59-64	Failure of assumptions	pp. 249-250		
Random samples & populations	pp. 14-15				
		Nonparametric analogs of ANOV	A		
Descriptive Statistics	pp.14-17	Assumptions			
Location and dispersion		Kruskal-Wallis test	pp. 195-196		
Relationships	pp. 72-75	Friedman's test	pp. 284-285		
Statistics vs. parameters		Follow up tests			
Probability	рр. 7-13	Generalized linear models	рр. 359-379		
Concepts	rr.,		FF CC C		
Distributions	рр. 9-13	Experimental design	рр. 155-172		
Normal distribution	pp. 17-19	1 8	11		
	11	Randomization			
Estimation		Replication			
Point vs. interval estimates	pp.19-25	Control			
<i>t</i> -distribution		Experimental units			
χ^2 distribution		Complex designs; split plots	pp. 301-338		
Hypothesis testing	pp. 3-5; 7	EXAM II – <u>tentatively</u> : 31 Octo	EXAM II – <u>tentatively</u> : 31 October during the lab period		
Null and alternative hypotheses	pp. 32-36				
Assumptions		Regression			
Type 1 and type 2 errors	pp. 42-45	Assumptions	pp. 92-94		
<i>t</i> -tests	pp. 33-39; 45	Reasons for doing regression	p. 78		
One tailed vs. two tailed tests	p. 37	Linear regression	pp. 77-94		
		Failure to meet assumptions Geometric mean regression	pp. 94-100; 104-106 pp. 100-104		
Failure to meet assumptions		Comparing regression lines	pp. 100-104 pp. 90-92		
Examples and consequences Transformations	pp. 64-68	Analysis of covariance	pp. 339-358		
Nonparametric tests	pp. 04-08 pp. 46-47	Polynomial regression	pp. 133-135		
Randomization tests	pp. 45-46	Multiple & stepwise regression			
	pp. 10 10		rr,,		
Analysis of variance		Correlation			
Assumptions and the model	pp. 171; 191-194	Assumptions	pp. 75-76		
One way ANOVA	pp. 173-188; 190-191	Relationship to regression	pp. 72-76; 106		
Orthogonal contrasts	pp.196-199	Deutiel e enveletien			
Multiple comparisons	pp. 48-50; 199-201	Partial correlation Nonparametric correlation	pp. 76-77		
EXAM I – <u>tentatively</u> : 19 Septen	nher, during the lab neriod	Nonparametric correlation	pp. 70-77		
Eastin i <u>centativery</u> . 17 Septem	inser, uuring the lab period	Frequency data	p. 380		
Analysis of variance		Proportions			
Fixed vs. random effects	pp. 176; 186-187; 188-191	Goodness of fit	pp. 381		
Two way ANOVA	pp. 321-363	χ^2 vs. likelihood ratio	pp.394-395		
Factorial designs	pp. 221-241	Contingency tables	pp. 381-393		
Followup tests	pp. 251-261	Fisher's exact test			
Unbalanced designs	pp. 241-249				
Nested designs	pp. 208-221	Miscellaneous Methods			
		Combining probabilities	pp. 50-51		
		CUMULATIVE FINAL – As sc Take home part due: 11:59 F			

BIOSTATISTICS (BSC 490 & 420.27)

Fall 2019

LABORATORY SCHEDULE

Date	Laboratory Topics
22 August	Introduction to SAS; Data entry; Data manipulation; Summary Statistics
29 August	Probability: Generating & working with random numbers
5 September	One & two sample <i>t</i> -tests & Wilcoxon tests
12 September	One way ANOVA (fixed); Testing assumptions; Contrasts; Multiple comparisons; Nonparametric
19 September	Exam I
26 September	One way ANOVA (Random); Estimating variance components
3 October	Two Way factorial ANOVA; Interactions;
10 October	More Two Way ANOVA; Unbalanced designs; Least Squares Means for multiple comparisons; Fixed, random, and mixed model ANOVA in <i>SAS</i>
17 October	Mixed Model ANOVA: Comparing GLM, VARCOMP, MIXED
24 October	Two Stage Nested ANOVA; Estimating variance components
31 October	Exam II
7 November	Generalized linear models for ANOVA: GENMOD, GLIMMIX, and comparison to GLM
14 November	Linear & Multiple regression; Residuals; Testing assumptions
21 November	Analysis of covariance; Test homogeneity of slopes; Estimate separate slopes <i>Steve in Costa Rica with Rainforest Ecology; Ian in charge</i>
28 November	Thanksgiving break
5 December	Loose ends/Review

Notes on SAS

It is **essential** that you read the assignments **before coming to lab.** This is particularly true for the first two weeks, when you will be learning about how to use *SAS*. Learning how to use *SAS* is **vital** to your success in this course, your sanity, and probably your success as a research student.

I no longer require a *SAS* manual as a reference. Instead I will show you how to look up the information you need in the very extensive documentation that is included with installed *SAS* software.