Homework Problem Set 2 Solutions

1. For each of the following functions of \(x \) and \(y \), determine the partial derivatives

\[
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial x \partial y}, \text{ and } \frac{\partial^2 f}{\partial y \partial x}.
\]

a.) \(f(x,y) = 5e^x y + y \)

\[
\begin{align*}
\frac{\partial f}{\partial x} &= 5e^x y \\
\frac{\partial f}{\partial y} &= 5e^x + 1
\end{align*}
\]

\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2} &= 5e^x y \\
\frac{\partial^2 f}{\partial y \partial x} &= 5e^x
\end{align*}
\]

b.) \(f(x,y) = y \ln(x) + x \ln(x) \)

\[
\begin{align*}
\frac{\partial f}{\partial x} &= \frac{y}{x} + 1 + \ln(x) \\
\frac{\partial f}{\partial y} &= \ln(x)
\end{align*}
\]

\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2} &= -\frac{y}{x^2} + \frac{1}{x} \\
\frac{\partial^2 f}{\partial y \partial x} &= 0
\end{align*}
\]

\[
\begin{align*}
\frac{\partial^2 f}{\partial x \partial y} &= \frac{1}{x} \\
\frac{\partial^2 f}{\partial y \partial x} &= \frac{1}{x}
\end{align*}
\]

c.) \(f(x,y) = (xy^3)^{1/2} \) \text{ or } \(x^{1/2}y^{3/2} \)

\[
\begin{align*}
\frac{\partial f}{\partial x} &= \frac{1}{2} x^{-1/2} y^{3/2} \\
\frac{\partial f}{\partial y} &= \frac{3}{2} x^{1/2} y^{1/2}
\end{align*}
\]

\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2} &= -\frac{1}{4} x^{-3/2} y^{3/2} \\
\frac{\partial^2 f}{\partial y \partial x} &= \frac{3}{4} x^{1/2} y^{-1/2}
\end{align*}
\]

\[
\begin{align*}
\frac{\partial^2 f}{\partial x \partial y} &= \frac{3}{4} x^{-1/2} y^{1/2} \\
\frac{\partial^2 f}{\partial y \partial x} &= \frac{3}{4} x^{1/2} y^{-1/2}
\end{align*}
\]
1.) continued

d.) \(f(x,y) = 3x^2 \cos y + xy^3 \)

\[
\left(\frac{\partial f}{\partial x} \right)_y = 6x \cos y + y^3 \\
\left(\frac{\partial f}{\partial y} \right)_x = -3x^2 \sin y + 3xy^2
\]

\[
\left(\frac{\partial^2 f}{\partial x^2} \right)_y = 6 \cos y \\
\left(\frac{\partial^2 f}{\partial y^2} \right)_x = -3x^2 \cos y + 6xy
\]

\[
\left(\frac{\partial^2 f}{\partial x \partial y} \right) = -6x \sin y + 3y^2 \\
\left(\frac{\partial^2 f}{\partial y \partial x} \right) = -6x \sin y + 3y^2
\]

e.) \(f(x,y) = e^{-3x} \left(1 - x^2 \right) y^3 \ln(y) \)

\[
\left(\frac{\partial f}{\partial x} \right)_y = \left[-3e^{-3x} \left(1 - x^2 \right) - 6xe^{-3x} \right] y^3 \ln y = \left(3x^2 - 6x - 3 \right) e^{-3x} y^3 \ln y
\]

\[
\left(\frac{\partial f}{\partial y} \right)_x = e^{-3x} \left(1 - x^2 \right) \left(3y^2 \ln y + y^2 \right)
\]

\[
\left(\frac{\partial^2 f}{\partial x^2} \right)_y = (6x - 2) e^{-3x} y^3 \ln y - 3 \left(3x^2 - 2x - 3 \right) e^{-3x} y^3 \ln y = \left(-9x^2 + 12x + 7 \right) e^{-3x} y^3 \ln y
\]

\[
\left(\frac{\partial^2 f}{\partial y^2} \right)_x = e^{-3x} \left(1 - x^2 \right) \left(6y \ln y + 5y \right)
\]

\[
\left(\frac{\partial^2 f}{\partial x \partial y} \right) = \left[-3e^{-3x} \left(1 - x^2 \right) - 6xe^{-3x} \right] \left(3y^2 \ln y + y^2 \right) = \left(3x^2 - 6x - 3 \right) e^{-3x} \left(3y^2 \ln y + y^2 \right)
\]

\[
\left(\frac{\partial^2 f}{\partial y \partial x} \right) = \left(3x^2 - 2x - 3 \right) e^{-3x} \left(3y^2 \ln y + y^2 \right)
\]
2. For each of the following functions of two variables, evaluate the two first partial derivatives. [Where it appears in the expressions below, \(R \) corresponds to the gas constant.]

a.) \(H(T,P) = \frac{3}{2} R \ln T - P \ln P + \frac{3T}{2P} \)

\[\left(\frac{\partial H}{\partial T} \right)_P = \frac{3R}{2T} + \frac{3}{2P} \]

\[\left(\frac{\partial H}{\partial P} \right)_T = -\ln P - 1 - \frac{3T}{2P^2} \] (the product rule is required here)

b.) \(s(v,t) = \frac{1}{2} vt^2 + ve^{-v} \)

\[\left(\frac{\partial s}{\partial v} \right)_t = \frac{1}{2} t^2 + e^{-v} - ve^{-v} \] (the product rule is required here)

\[\left(\frac{\partial s}{\partial t} \right)_v = vt \]

c.) \(P(V,T) = \frac{RT}{V} (1 + bV) \)

\[\left(\frac{\partial P}{\partial V} \right)_T = -\frac{RT}{V^2} \]

\[\left(\frac{\partial P}{\partial T} \right)_V = \frac{R}{V} (1 + bV) \]

d.) \(u(r,\theta) = \frac{3}{2} r^2 \cos \theta - re^r \sin \theta \)

\[\left(\frac{\partial u}{\partial r} \right)_\theta = 3r \cos \theta - e^r \sin \theta - re^r \sin \theta \] (the product rule is required here)

\[\left(\frac{\partial u}{\partial \theta} \right)_r = -\frac{3}{2} r^2 \sin \theta - re^r \cos \theta \]
2. continued

e.) \[H(T,P) = \frac{3}{2}RT + RT^2Pe^{-3P} \]
\[
\left(\frac{\partial H}{\partial T} \right)_P = \frac{3}{2}R + 2RTpe^{-3P}
\]
\[
\left(\frac{\partial H}{\partial P} \right)_T = RT^2e^{-3P} - 3RT^2Pe^{-3P} \quad \text{(the product rule is required here)}
\]

f.) \[P(V,T) = RT + RT\ln V \]
\[
\left(\frac{\partial P}{\partial V} \right)_T = RT\ln V + RT \quad \text{(the product rule is required here)}
\]
\[
\left(\frac{\partial P}{\partial T} \right)_V = R + RV\ln V
\]

3. For each of the following functions of three variables, evaluate the requested partial derivatives.

a.) \[r = \sqrt{x^2 + y^2 + z^2} \] ; evaluate \(\left(\frac{\partial r}{\partial x} \right)_{y,z} \).

We must use the chain rule in this case,
\[
\left(\frac{\partial r}{\partial x} \right)_{y,z} = \frac{1}{2} \left(x^2 + y^2 + z^2 \right)^{-1/2} \cdot 2x
\]
\[
= x \left(x^2 + y^2 + z^2 \right)^{-1/2} \quad \text{(which also equals} \quad \frac{x}{r} \quad \text{)}
\]

b.) \[x = r \sin \theta \sin \phi \] ; evaluate \(\left(\frac{\partial x}{\partial \phi} \right)_{r,\theta} \).
\[
\left(\frac{\partial x}{\partial \phi} \right)_{r,\theta} = r \sin \theta \cos \phi
\]
4. Evaluate the following expressions using the ideal gas equation of state.

a.) \(\left(\frac{\partial T}{\partial P} \right)_{V_m} \)

In this case, the partial derivative required involves \(T \) and also requires \(V_m \) to be held constant. Therefore, the ideal gas equation of state should be solved for \(T \) and written in terms of \(V_m \) before the partial derivative is evaluated,

\[
T = \frac{PV}{nR} = \frac{PV_m}{R}.
\]

Then, the partial derivative may be evaluated,

\[
\left(\frac{\partial T}{\partial P} \right)_{V_m} = \frac{V_m}{R}.
\]

b.) \(\left(\frac{\partial T}{\partial V_m} \right)_{P} \)

The partial derivative required here involves \(T \) and also requires a derivative of \(V_m \) to be evaluated. Therefore, the ideal gas equation of state should be solved for \(T \) and written in terms of \(V_m \) before the partial derivative is evaluated,

\[
T = \frac{PV}{nR} = \frac{PV_m}{R}.
\]

Then, the partial derivative may be evaluated,

\[
\left(\frac{\partial T}{\partial V_m} \right)_{P} = \frac{P}{R}.
\]
5. The isothermal compressibility κ is defined by the relation

$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T,$$

and the expansion coefficient α is given by

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P.$$

Evaluate these quantities for an ideal gas (assume that n is constant).

For the isothermal compressibility, the partial derivative required involves V. Therefore, the ideal gas equation of state should be solved for V before the partial derivative is evaluated,

$$V = \frac{nRT}{P}.$$

Next, the partial derivative may be evaluated,

$$\left(\frac{\partial V}{\partial P} \right)_T = -\frac{nRT}{P^2}.$$

Finally, the partial derivative may be substituted into the expression for the isothermal compressibility and simplified,

$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T = -\frac{1}{V} \left(-\frac{nRT}{P^2} \right) = \frac{P}{nRT} \left(\frac{nRT}{P^2} \right)$$

$$\kappa = \frac{1}{P}.$$

For the expansion coefficient, the partial derivative required also involves V. Therefore, the ideal gas equation of state should be solved for V before the partial derivative is evaluated,

$$V = \frac{nRT}{P}.$$

Next, the partial derivative may be evaluated,

$$\left(\frac{\partial V}{\partial T} \right)_P = \frac{nR}{P}.$$

Finally, the partial derivative may be substituted into the expression for the expansion coefficient and simplified,

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = \frac{1}{V} \left(\frac{nR}{P} \right) = \frac{P}{nRT} \left(\frac{nR}{P} \right)$$

$$\alpha = \frac{1}{T}.$$
6. The van der Waals equation for a real gas is defined as \(P + \frac{a}{V_m^2} \left(V_m - b \right) = RT \), where \(V_m \) is the molar volume, \(R \) is the gas constant, and \(a \) and \(b \) are van der Waals constants. For the van der Waals equation, determine

a.) \(\left(\frac{\partial P}{\partial V_m} \right)_T \)

In order to evaluate the partial derivative, we must first solve the van der Waals equation for \(P \),

\[
P + \frac{a}{V_m^2} \left(V_m - b \right) = RT
\]

\[
P = \frac{RT}{V_m - b} - \frac{a}{V_m^2}
\]

Using this expression, the partial derivative may be evaluated,

\[
\left(\frac{\partial P}{\partial V_m} \right)_T = -\frac{RT}{(V_m - b)^2} + \frac{2a}{V_m^2}
\]

b.) \(\left(\frac{\partial^2 P}{\partial V_m^2} \right)_T \)

This second partial derivative is related to the first partial derivative obtained in part (a),

\[
\left(\frac{\partial P}{\partial V_m} \right)_T = -\frac{RT}{(V_m - b)^2} + \frac{2a}{V_m^3}
\]

So now we take the derivative again with respect to \(V_m \) (holding \(T \) fixed),

\[
\left(\frac{\partial^2 P}{\partial V_m^2} \right)_T = \frac{2RT}{(V_m - b)^3} - \frac{6a}{V_m^4}
\]