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Peak Shift and Rules in Human Generalization

Jessica C. Lee, Brett K. Hayes, and Peter F. Lovibond
University of New South Wales

Two experiments tested whether a peak-shifted generalization gradient could be explained by the
averaging of distinct gradients displayed in subgroups reporting different generalization rules. Across
experiments using a causal judgment task (Experiment 1) and a fear conditioning paradigm (Experiment
2), we found a close concordance between self-reported rules and generalization gradients using a
continuous stimulus dimension (hue). Both experiments also showed an overall peak-shifted gradient
after differential conditioning, but not after single cue conditioning. Importantly, the peak shift could be
decomposed into linear and peaked gradients when participants were divided into rule subgroups. Our
results highlight the need to consider individual differences in the rules that participants derive in human
generalization studies and suggest that in some situations, peak shift may be a consequence of averaging
across diverse rule subgroups.
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Generalization concerns the transfer of learning from past in-
stances to novel instances and is an adaptive ability that allows us
to anticipate events and engage appropriately with the world.
Investigating the theoretical processes underlying generalization is
paramount to understanding behavior, since new stimuli that we
encounter in the world are never exactly the same as previously
experienced instances (Shepard, 1987). There are also important
clinical implications in studying generalization, as maladaptive
generalization has been implicated in clinical disorders, such as
panic disorder (Lissek et al., 2010), posttraumatic stress disorder
(Grillon & Morgan, 1999; Morey et al., 2015), and generalized
anxiety disorder (Lissek et al., 2014).

Empirical investigation of generalization originated in the ani-
mal conditioning literature, where generalization along a stimulus
dimension was assessed following different types of conditioning
procedures. In single cue conditioning, an animal is trained to
respond in the presence of a single stimulus (S�) by rewarding
responses in the presence of that stimulus in an operant condition-
ing procedure, or a single stimulus (conditionaled stimulus [CS]�)
is followed by an unconditioned stimulus (US) such as food or
shock, in a Pavlovian procedure. In differential conditioning, an-
other stimulus (S�) is presented during which responses are never
rewarded, or in the Pavlovian case, another stimulus (CS�) is
presented that is not followed by the US. Learning is evident when
the animal responds (either an instrumental response or a condi-

tioned response) in the presence of the S� or CS�, and in the case
of differential conditioning, suppresses responding to the S� or
CS�. After training, generalization testing is typically assessed by
varying the dimension of interest and measuring the degree to
which the animal responds, producing a generalization gradient.

In the first study to examine generalization gradients empiri-
cally, Guttman and Kalish (1956) tested pigeons using stimuli
varying along a visual wavelength (hue) dimension. Following
single cue training with keylights of different wavelength, they
found peaked, symmetrical gradients with the highest rates of
responding at the value of the S� (see Figure 1 for an example).
Such peaked gradients are usually taken to indicate generalization
on the basis of similarity to the physical features of the S�. If,
however, animals are given differential training whereby they
learn to discriminate between a S� and a S� lying on the same
dimension (i.e., “intradimensional” or within-dimension discrimi-
nation), the peak of the gradient can shift beyond the S� in the
direction away from the S� (Figure 1). This “peak shift” effect
was first reported by Hanson (1957; see Purtle, 1973, for a review)
and is reliably found in a variety of animal species and stimulus
dimensions (given appropriate parameters on the training and test
procedures; see Purtle, 1973). A related and more commonly
found feature of the postdiscrimination generalization gradient is
that it is asymmetrical, with more responding to stimuli on the
opposite side of the S� to the S� (an “area shift”; see Honig &
Urcuioli, 1981; Figure 1).

Peak shift has received a large amount of interest in the animal
conditioning and ethology literature due to its demonstration of a
seemingly adaptive behavior involving greater responding for a
novel stimulus compared with a trained stimulus with which the
animal has had prior experience. Peak shift has been proposed as
an explanation for a wide range of phenomena, including why
caricatures of faces are better recognized than actual faces (Lewis
& Johnston, 1999), and why animals come to prefer slightly
exaggerated features in mating partners (ten Cate, Verzijden, &

This article was published Online First March 19, 2018.
Jessica C. Lee, Brett K. Hayes, Peter F. Lovibond, School of Psychol-

ogy, University of New South Wales.
This study was funded by an Australian Research Council Discovery

Grant (DP160101907) awarded to Peter Lovibond and Brett Hayes. We
thank Nik Raic for assistance with data collection.

Correspondence concerning this article should be addressed to Jessica
Lee, School of Psychology, University of New South Wales, UNSW
Sydney, NSW 2052, Australia. E-mail: jessica.lee@unsw.edu.au

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Journal of Experimental Psychology:
Learning, Memory, and Cognition

© 2018 American Psychological Association

2018, Vol. 44, No. 12, 1955–1970
0278-7393/18/$12.00 http://dx.doi.org/10.1037/xlm0000558

1955

mailto:jessica.lee@unsw.edu.au
http://dx.doi.org/10.1037/xlm0000558


Etman, 2006). As detailed in the following sections, peak shift has
traditionally been explained in associative terms—as a conse-
quence of interactions between conditioned excitation and inhibi-
tion. In this article, however, we argue that understanding peak
shift benefits from taking a broader theoretical perspective, which
conceives of human learning and generalization as a process of
rule generation and testing, where the participant is actively seek-
ing to determine the class or category of stimuli that reliably
predict an outcome (e.g., an aversive event like electric shock). We
see our approach as broadly consistent with other work that has
argued that more complex conceptual processes play a key role in
human conditioning (e.g., Dunsmoor & Murphy, 2015).

Associative Accounts of Peak Shift in Infrahuman
Animals and Humans

An influential account of peak shift was provided by Spence
(1937). Spence’s account postulated that during differential con-
ditioning, an excitatory gradient is established around the S� and
an inhibitory gradient around the S�. On test, these gradients sum
algebraically to determine the net associative strength of the gen-
eralization stimuli, and accordingly, responses to these stimuli.
Assuming that the excitatory gradient was narrower and taller than
the inverse of the inhibitory gradient (later confirmed in studies by
Honig, Boneau, Burstein, & Pennypacker, 1963; see Honig &
Urcuioli, 1981, for a review), subtracting the inhibitory gradient
from the excitatory gradient produces a peak-shifted gradient. In
single cue conditioning, the absence of an inhibitory gradient
means that the excitatory gradient alone determines generalization,

producing a peaked gradient with the highest responding at the S�
(Figure 1).

In a similar fashion, more recent associative theories (Blough,
1975; Ghirlanda & Enquist, 1998; McLaren & Mackintosh, 2002)
explain peak shift by postulating elemental representation of stim-
ulus dimensions and graded (i.e., Gaussian) overlapping activation
across these elements by the S� and S�. Similar to Spence’s
account, their central tenet is that activation of the elements on the
dimension by the S� and S� interact such that elements that are
activated maximally by the S� do not accrue the most associative
strength (unlike in single cue training) because of their concurrent
inhibitory activation by the S�. Rather, the stimulus that produces
the greatest discrepancy in activation between the S� and S� will
produce the highest level of conditioned responding during gen-
eralization. Following differential training with a perceptually
similar S�, this will typically be a stimulus that is slightly dis-
placed from the S� in the direction away from the S� (Figure 1).
Associative accounts therefore provide an adequate and precise
explanation of the shape of generalization gradients following
different training procedures in nonhumans (see Mackintosh,
1974, for a review).

In humans, however, peak shift is relatively elusive in compa-
rable single-outcome conditioning designs (but see Dunsmoor &
LaBar, 2013; Struyf, Iberico, & Vervliet, 2014) and appears in
two-choice discrimination tasks only under certain conditions (see
Livesey & McLaren, 2009; Wills & Mackintosh, 1998). In contrast
to the animal literature, a variety of generalization gradients have
been found following both single cue and differential conditioning,
suggesting that there are other mechanisms that influence gener-
alization. In particular, in addition to peaked gradients, participants
can also exhibit a monotonically increasing (e.g., linear) gradient
with the highest level of responding at the extreme end of the
dimension (Dunsmoor, Mitroff, & LaBar, 2009; Laberge, 1961;
see also Livesey & McLaren, 2009, and Wills & Mackintosh,
1998, for examples in two-choice discrimination learning). Such
linear gradients are suggestive of the use of relational rules (e.g.,
“the greener the stimulus, the more likely the outcome”) derived
from participants noticing the relation between the S� and S�.

Peak Shift and the Role of Rules

There is a growing interest in investigating the role of cognitive
processes such as rule formation, categorization, and inductive
reasoning in the learning and generalization of conditioned re-
sponses, and recognition that these processes exert powerful in-
fluences on generalization over and above perceptual similarity
(Dunsmoor & Murphy, 2015; Dymond, Dunsmoor, Vervliet,
Roche, & Hermans, 2015). For example, Dunsmoor and Murphy
(2014) have shown that participants are more willing to generalize
from typical to atypical exemplars than from atypical to typical
exemplars in fear conditioning. This result is significant because
the physical similarity between the CS� and generalization stimuli
was identical across conditions. The result suggests that general-
ization was influenced by participants’ knowledge of category
structure, in line with results found in studies of inductive reason-
ing with verbal materials (e.g., see Hayes & Heit, in press, for a
review). Other studies have shown that instructional manipulations
influence the rules that participants form, and hence their subse-
quent generalization (Ahmed & Lovibond, 2015; Boddez, Bennett,

Figure 1. Example of typical generalization gradients following single
cue and differential Pavlovian conditioning. CS� (S� in instrumental
conditioning) is the conditioned stimulus paired with an outcome, and CS�
(S� in instrumental conditioning) is the conditioned stimulus not paired
with an outcome. See the online article for the color version of this figure.
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van Esch, & Beckers, 2017; Vervliet, Kindt, Vansteenwegen, &
Hermans, 2010), and Dunsmoor, Martin, and LaBar (2012) have
demonstrated that generalization of conditioned fear occurs across
conceptually related stimuli. Such results suggest that perceptual
similarity is just one of many potential stimulus relations that can
influence generalization.

Recognition of individual variability in learning strategies is
also evident in the category learning literature. For example, some
participants categorize on the basis of exemplar similarity, while
others use dimensional or conjunction rules (Little & McDaniel,
2015; McDaniel, Cahill, Robbins, & Wiener, 2014; Nosofsky,
Palmeri, & McKinley, 1994). The tendency to search for rules has
been suggested to be a stable psychological trait that influences
learning strategy across a wide range of cognitive tasks (Don,
Goldwater, Otto, & Livesey, 2016; McDaniel et al., 2014) and may
be related to working memory capacity or fluid intelligence (Mc-
Daniel et al., 2014, but see Little & McDaniel, 2015). Alterna-
tively, the likelihood of deriving a relational rule may also depend
on mastery of the training material (DeLosh, Busemeyer, & Mc-
Daniel, 1997; McDaniel & Busemeyer, 2005; Shanks & Darby,
1998; but see McDaniel et al., 2014), or if the stimulus or task is
complex, whether participants happen to attend to a particular
stimulus feature. Acknowledging the existence of individual dif-
ferences in generalization leads to the conclusion that analyzing
group-level data alone can be misleading (see Estes, 1956, for a
similar view and Maddox, 1999, for a simulation in category
learning). Furthermore, analyzing aggregate data can obscure in-
teresting results when subgroups of participants are generalizing in
different ways (see Livesey & McLaren, 2009, Experiment 2). If
we accept that group-level data can be decomposed into distinct
gradients exhibited by subgroups of participants using different
strategies, an alternative explanation for peak shift may be derived.

A peak-shifted gradient obtained at the group-level is explain-
able if a certain subgroup of participants generalize according to a
linear relational rule (e.g., “the bluer the stimulus, the more likely
the outcome is”; Figure 2) and another subgroup generalize ac-
cording to symmetrical stimulus similarity (e.g., “the closer the
stimulus is to the bluey-green stimulus that led to shock, the more
likely the outcome is”). The former rule will produce a linear
gradient, while the latter rule will produce a peaked gradient
around the CS�, with decreasing responding as similarity to the
CS� decreases; Figure 2).1 Crucially, if the “similarity” subgroup
produces the highest level of responding at the CS�, and the
gradient exhibited by the “linear” subgroup is sufficiently steep,
the peak of responding of the averaged gradient should be not at
the CS�, but at a stimulus slightly removed from the CS� in the
direction away from the CS� (in Figure 2, the peak is shifted to
the right of the CS�).

Thus, the averaging of generalization gradients from these sub-
groups would produce a peak-shifted gradient, despite no individ-
ual displaying a peak shift. This explanation is equally applicable
to the phenomenon of area shift since a linear gradient obviously
contains an area shift (Figure 2). By contrast, the same peak-
shifted gradient would not be predicted to occur following single-
cue training because linear rules could be derived in either direc-
tion along the dimension (e.g., if the dimension ranges from green
to blue, “greener/bluer stimuli lead to the outcome”), making the
resultant gradient symmetrical and flat. Such a result would sug-

gest that peak shift can arise from averaging data over groups, and
therefore would not uniquely support an associative account.

The Current Studies

The aim of the current studies was to test whether an overall peak
shift could be obtained from the combination of “linear” and “simi-
larity” rule subgroups. Hue (restricted to blue-green) was chosen as
the generalization dimension to emulate the early animal generaliza-
tion literature, which primarily used key lights of different hues (e.g.,
Hanson, 1957). We used a causal judgment (Experiment 1), as well as
a fear conditioning paradigm (Experiment 2). This was important to
test whether results obtained in causal judgment replicated when
using a biologically significant outcome (shock). The general proce-
dure was similar to that of Ahmed and Lovibond (2016, 2017) and
Wong and Lovibond (2017) in that participants were divided into
subgroups based on their reported rules in a questionnaire. Verbal
report has been used successfully in a variety of tasks to distinguish
between different strategies and rules (e.g., Gluck, Shohamy, & My-
ers, 2002; Little & McDaniel, 2015; Regehr & Brooks, 1995; Smith
& Sloman, 1994) and has produced distinct gradients between rule
subgroups in previous studies (Ahmed and Lovibond, 2016, 2017;
Wong & Lovibond, 2017).

Our study advances beyond these previous studies in a number
of ways. First and foremost, none of these earlier studies specifi-
cally aimed to examine peak shift and none reported a significant
peak shift in the generalization test. Second, the stimuli used in the
previous experiments were not optimal for identifying linear and
similarity-based rules used by different participations. Ahmed and
Lovibond, 2016 used circle size, which is an “intensity” dimen-
sion. Intensity dimensions have been shown to produce linear
generalization gradients even in animals (e.g., Grice & Saltz, 1950;
Hull, 1949; Razran, 1949). This complicates the interpretation of
any linear gradients obtained. Ahmed and Lovibond, 2017 and
Wong and Lovibond (2017) used a dimension with a clearly
defined midpoint (a dot in a square box that varied its horizontal
location within the box) that was therefore noncontinuous. The
middle location (the CS�) was highly salient and may have
facilitated grouping of the dimension into three categories: left of
center, center, and right of center. Thus, the stimuli employed in
these previous studies may have promoted the formation of ex-
plicit generalization rules and masked evidence of associative
learning processes. In other words, the high degree of concordance
between generalization gradients and verbalizable rules may have
been a product of the stimuli used in these studies.

In addition to a group that underwent differential conditioning
(Differential group), we also included a control group that under-
went single cue conditioning (Single Cue group) with a single
CS�. Comparing the differences in gradients between groups
allowed us to test how adding a CS� affects generalization
through changing the distribution of subgroups using different
rules, as well as the direction of the linear rules. Specifically, linear
rules might be produced in either direction in single cue condi-
tioning, whereas differential conditioning should bias linear rules
in the direction consistent with the training contingencies. The
novel prediction was that the bias in the linear rules would produce

1 In these experiments, it is typical to use a CS� that lies somewhere in
the middle of the dimension.
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peak shift when combined with the peaked gradients displayed in
the Similarity subgroup.

Experiment 1

Experiment 1 utilized a causal judgment paradigm. Causal judg-
ment paradigms have traditionally been interpreted as measuring
associative learning despite the explicit nature of the learning
conditions and verbalizable nature of outcome measures (see
Shanks, 2007). Thus, despite being quite different from the con-
ditioning paradigms used in animal studies, causal ratings in this
task can be seen as an index of associative strength between
stimuli (CSs) and outcomes (USs). Participants underwent condi-
tioning with either a single CS� (Single Cue group) or a CS� and
CS� (Differential group), with the CS� followed by the outcome
75% of the time, and the CS �never followed by the outcome.
Partial reinforcement was used to avoid participants reaching ceil-
ing levels of expectancy at the end of training which would restrict
the opportunity to observe responding beyond the CS� that is
needed to observe both linear gradients and peak shift. For the
Differential group, the CS� and CS� lay on the same dimension
(hue) and were perceptually similar, approximating the procedures
typically used in the peak shift literature.

Hue was chosen as the continuous stimulus dimension to mea-
sure generalization to provide consistency with the animal condi-
tioning literature. It was hypothesized that for both Single Cue and
Differential groups, a linear generalization gradient would be
exhibited in the subgroups reporting a linear rule, a peaked gradi-

ent with the highest ratings at the CS� would be evident in the
subgroups reporting a similarity rule, and a flat generalization
gradient would be shown in the subgroups who either reported
miscellaneous rules ignoring hue or did not report any rule. In the
Differential group, the presence of the CS� should promote for-
mation of a linear rule in the direction consistent with the relational
difference between the CS� and CS� (e.g., if the CS� was
greener than the CS�, then participants should show the highest
expectancy of the outcome at the greenest stimulus). By contrast,
linear rules reported by Single Cue group participants were not
expected to be in a consistent direction since participants would
not have experience with a CS� to promote formation of a linear
rule in a particular direction. When combined with the peaked
gradients in the Similarity subgroup, the Differential group may
show an overall peak-shifted gradient that is composed of two
distinct gradients, while the Single Cue group should show a
peaked gradient centered at the CS�.

Method

Participants. A total of 181 first-year psychology students
(111 women, Mage � 19.09, SD � 2.11) at the University of New
South Wales participated in exchange for partial course credit. All
participants were recruited via an internal website. Participants
were randomly allocated to the Single Cue (n � 91) or Differential
group (n � 90). Participants were excluded if they indicated that
they were colorblind (1 participant), or if they failed the training
criterion (a further 61 participants). The criterion was an average

Figure 2. Example generalization gradients from Linear and Similarity subgroups following differential
training and resulting average group-level gradient showing a peak shift.
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causal rating �50 for the CS� in the final block (last 4 trials) of
training for both groups, and for the Differential group, an addi-
tional requirement that ratings for the CS� were �20. After
exclusions, a total of 119 participants remained (46 in the Differ-
ential group and 73 in the Single Cue group). The high rate of
exclusions based on training performance was most likely because
of the perceptual difficulty of the discrimination (Figure 3), the
small number of training trials, as well as partial reinforcement
creating uncertainty in participants’ prediction of the outcome.

Apparatus. The experiment was programmed using Psych-
toolbox (Brainard, 1997; Pelli, 1997) and run using Matlab on
standard PC computers connected to a 23-inch monitor. Partici-
pants made responses using a standard PC keyboard and mouse in
individual cubicles.

Stimuli. There were 11 circle stimuli (200 pixels in diameter)
presented in the experiment that varied in hue along the green-blue
dimension (Figure 3). The stimuli were created on the HSB (hue,
saturation, brightness) scale by varying hue (H), keeping saturation
(S) and brightness (B) levels constant at 100% and 75% respec-
tively. The minimum and maximum hue values were .403 and
.555, with equal spacing between stimuli along the dimension (see
online supplemental materials for exact hue values).

Procedure. Experiment 1 was approved by the University of
New South Wales Human Research Ethics Advisory Panel. The
experiment was composed of a training phase, test phase, and
post-test questionnaire. All instructions and stimuli were presented
on a light gray background that had RGB (red, green, blue) values
of (200, 200, 200).

Training. Participants in the Single Cue group received train-
ing with a single aqua (blueish-green) stimulus at the midpoint on
the tested dimension (Stimulus 6, S6), while participants in the
Differential group received discrimination training with a CS�
(S6) and a CS� (S4 on the dimension; Figure 3). Because the
direction of the dimension was essentially arbitrary for the Single
Cue group (i.e., S1 and S11 were interchangeable), a direction had
to be specified so that the generalization gradients could be com-
pared meaningfully between groups. Therefore, for both Single
Cue and Differential groups, the direction of the hue dimension
(going from S1 to S11) was counterbalanced (green to blue or blue
to green) such that for the Differential group, the CS� was either
greener or bluer than the CS� (which was always the same
stimulus, S6). This meant that for every participant in the Differ-
ential group who received training with CS� (S4), another par-
ticipant in the Single Cue group was put in the same counterbal-
ancing condition such that the physical stimulus representing S4
was identical across pairs of participants.

Training consisted of 12 presentations of the CS� for the Single
Cue Group, and 12 presentations of both the CS� and CS� for the
Differential group, with the CS� reinforced at a rate of 75%.
Trials were randomized in blocks of four trials for the Single Cue
group and eight trials for the Differential group, with the constraint
that the first CS� trial in each block had to be reinforced, and no
more than two presentations of the same stimulus could occur in a
row in the Differential group.

Participants were asked to make predictions about whether a
vending machine would dispense a snack (the outcome) based on
the symbol (CS) displayed on the vending machine. On each trial,
participants were presented with the symbol displayed on the
vending machine, and made a prediction about the likelihood of
snack delivery. Each symbol was a colored circle (200 pixels in
diameter) presented in a black 300 � 300 pixel square outline. The
symbol was presented first and after 1-s delay, a visual analogue
rating scale appeared underneath along with the question “How
likely is it that your snack will be delivered?”. The scale ranged
from “Certain NO snack” to “Certain snack,” and the midpoint and
endpoints were marked with a tick. There were no numerical
anchors. Participants responded by using the mouse to click any
point on the scale and pressed the spacebar once they were finished
with their rating. The trials were not timed, and participants could
change their rating as many times as they wanted. The next trial
began after a blank screen intertrial interval (ITI) of 2 s. The
instructions given to participants prior to training did not explicitly
refer to the color of the circle and did not encourage participants to
form rules. Rather, they stressed that the aim of the task was to
make predictions about whether a snack would be delivered based
on the symbol presented.

Generalization test. Prior to the test phase, both groups were
instructed that they would no longer receive feedback about
whether a snack would be delivered, but to continue making
ratings about the likelihood of snack delivery regardless. The test
phase consisted of two presentations of each of the 11 test stimuli,
with the order of presentation randomized in each block of 11
trials. All other task features were the same as the training phase.

Questionnaire. After the causal judgment task was finished,
participants completed a written questionnaire, administered on
two separate pages. Participants first answered a two-alternative
forced-choice (2AFC) question asking whether they thought there
was a relationship between the symbols and snack delivery (yes or
no). If participants answered “yes” they were asked to describe the
relationship, giving as much detail as possible, and also indicate
whether they figured out this relationship during the first phase of
the experiment (when there was feedback), or during the second
phase of the experiment (when there was no feedback). If partic-
ipants indicated that they did not think there was a relationship
between the symbols and snack delivery, they were not required to
fill out the remaining questions on that page, and progressed to the
second page of the questionnaire.

The first 2AFC question on the second page asked participants
how many different colored circles they saw during the training
phase (1 or 2), and the second 5AFC question asked participants to
select the option (i.e., rule) they thought best described the rela-
tionship between the symbols and snack delivery (see online
supplemental materials). Participants were asked to choose the best
option from two linear functions (with separate options for each
direction along the hue continuum, i.e., greener or bluer stimuli

Figure 3. Stimuli comprising the hue dimension in Experiment 1. The
direction of the dimension (going from S1 to S11) was counterbalanced
between participants (either green-blue, as above, or blue-green). S6 was
always the CS� and S4 was always the CS� in the Differential group. S7
was the stimulus predicted to show peak shift. See the online article for the
color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1959PEAK SHIFT AND RULES IN HUMAN GENERALIZATION

http://dx.doi.org/10.1037/xlm0000558.supp
http://dx.doi.org/10.1037/xlm0000558.supp
http://dx.doi.org/10.1037/xlm0000558.supp


were more likely to lead to the outcome), a similarity option stating
that only a single stimulus led to shock and that all others did not,
an option stating that there was no relationship between the stim-
uli, or another rule which they were asked to describe.2 Note that
this was the second opportunity for participants to either claim that
there was no relationship between the symbol and the outcome or
describe an alternative rule. The final question asked participants
to indicate whether they were colorblind.

Data analysis. To test for the presence of a linear gradient, a
linear trend analysis was conducted across the 11 test stimuli. To
test for peaked gradients, a quadratic trend analysis was conducted.
However, a quadratic trend is difficult to interpret in isolation
because the form of the gradient can vary considerably and still
show a significant quadratic trend (e.g., a gradient that increases
and then flattens). Thus, planned paired t tests between the CS�
and each endpoint (i.e., S1 vs. CS�, CS� vs. S11) were also
included as a more stringent test of whether a gradient was peaked.

Associative theories and empirical demonstrations of peak shift
predict the peak of responding to be only slightly removed from
the S� when the S� and S� are highly similar and the breadth of
generalization is narrow. Thus, to test for the presence of peak
shift, paired t tests were conducted using the stimulus immediately
next to the CS� in the direction away from the CS� (S7). A
significant peak shift would be demonstrated if there were a
significant rise (from CS� vs. S7) and fall (from S7 to S11) in
expectancy at this peak. Because multiple analyses were done
within each subgroup and overall, Holm-Bonferroni-correction to
the critical alpha value was used to control the family wise Type
I error rate. Additional Bayes Factor analyses were carried out with
the “BayesFactor” package (Rouder, Speckman, Sun, Morey, &
Iverson, 2009) in R (R Core Team, 2015).

Questionnaire coding. Reported rules in the open-ended
question were classified into four categories: linear, similarity, no
relationship, and other.2 The reported rules were then classified by
a second rater, blind to the coding of the first rater. There was
substantial agreement (Landis & Koch, 1977) between the two
raters using Cohen’s kappa, k � .80, p � .001. Disagreements
between raters were resolved via discussion. A two-step procedure
was then employed to determine the final rule subgroups. Partic-
ipants who reported an unambiguous linear or similarity general-
ization rule in the open-ended question were simply put into those
subgroups (n � 69). If participants indicated that they did not think
there was a relationship between the symbols and the outcome, or
reported other rules (e.g., vague rules, rules referring to sequences
of trials, rules describing the training contingencies but not refer-
ring to the dimension), they were assigned to whatever rule they
had endorsed in the 5AFC question. The final four rule subgroups
were: linear, similarity, no relationship, and other.

Results and Discussion

Training. The training data were analyzed in an analysis of
variance (ANOVA) with presentation order as a within-subjects
factor for both groups, and trial type (CS� vs. CS�) as an
additional within-subjects factor for the Differential group. In the
Single Cue group, there was a marginal linear trend in causal
judgments to the CS� over the training trials, F(1, 72) � 4.12, p �
.046, �p

2 � .054 (Figure 4). In the Differential group, there was a
significant overall difference between causal judgments for the

CS� and CS�, F(1, 45) � 533.6, p � .001, �p
2 � .922, and a

significant interaction between the linear trend for the CS� and
CS�, F(1, 45) � 113.8, p � .001, �p

2 � .717, indicating that causal
judgments diverged over the training trials (Figure 4). Thus, there
was evidence of learning in both groups.

Generalization test. The overall generalization gradients
were first analyzed to look for peak shift in the Differential group,
and then planned contrast analyses were conducted for each rule
subgroup separately. The overall generalization gradients are
shown in Figure 5. Figure 5 shows that adding the CS� in the
Differential Group changed the shape of the generalization gradi-
ents. There was a significant overall linear, F(1, 117) � 91.3, p �
.001, �p

2 � .438, and quadratic trend, F(1, 117) � 70.6, p � .001,
�p

2 � .376. Both linear, F(1, 117) � 61.5, p � .001, �p
2 � .345, and

quadratic, F(1, 117) � 19.0, p � .001, �p
2 � .140, trends interacted

with group. The gradient for the Single Cue group appears to be
flat, while the gradient for the Differential group is more linear.
This was confirmed statistically in that there was no significant
linear trend in the Single Cue group, F(1, 72) � 1.61, p � .208,

2 Note that in the original classification there was an additional “step-
function” group designed to capture a rule whereby participants divided the
dimension into two categories, and grouped stimuli on one side of
the boundary (e.g., “bluer than the CS�) together in causing shock. The
treatment of these “step” rules in the questionnaire was exactly the same as
the linear rules, meaning that participants who reported an unambiguous
step rule in the free-report question were classified immediately into the
Step subgroup. There were also two additional options in the forced-choice
question, phrased in terms of either “green or greener stimuli” or “blue or
bluer” stimuli leading to the outcome (see online supplemental materials).
The final rule subgroups were Linear, Step, Similarity, No Relationship,
and Other. Because of a high degree of similarity between the gradients in
this Step subgroup with the Linear subgroup (see online supplementary
materials), we collapsed the Linear and Step subgroups into a final Linear
subgroup for the analyses.

Figure 4. Causal ratings over stimulus presentations in training for Ex-
periment 1. The CS� was reinforced at a rate of 75%, and the CS� was
never reinforced. Within-subject error bars calculated according to the
method proposed by Cousineau (2005) with the correction by Morey
(2008).
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�p
2 � .022, but there was in the Differential group, F(1, 45) �

171.9, p � .001, �p
2 � .793. The quadratic trend was significant in

both Single Cue, F(1, 72) � 15.8, p � .001, �p
2 � .180, and

Differential groups, F(1, 45) � 43.4, p � .001, �p
2 � .491. Thus,

in the Single Cue group, the gradient is best described as slightly
peaked.

Figure 5 also shows that for the Differential group, the peak of
responding was slightly removed from the S� in the direction
away from the S� at S7, the stimulus predicted to show a peak
shift. However, planned t tests comparing ratings for S7 against the
CS� (S6) and against the endpoint of the dimension (S11) showed
that both the rise, t(45) � 2.04, p � .048, SEM � 3.46, and fall in
ratings, t(45) � 1.64, p � .109, SEM � 5.73 were not significant
after Holm-Bonferroni corrections. Thus, although the peak of the
gradient was not at the CS�, the evidence for this overall peak
shift was weak.

Subgroup analysis. Table 1 shows the number of participants
categorized in each rule subgroup. It is apparent that although
many participants in both groups reported a linear rule, a larger
proportion of those in the Differential group reported a linear rule
than in the Single Cue group. Unsurprisingly, a large proportion of
participants in the Single Cue group also claimed that there was no
relationship between the stimulus dimension and the outcome.

Linear subgroups. The number of participants deriving a rule
in each direction (consistent/inconsistent with the training contin-
gencies, greener/bluer stimuli more likely to lead to the outcome)
is displayed in Table 2. It is clear that differential training led to a
strong tendency to derive a linear rule consistent with the direction
of the training contingencies. There was also a large bias in the
Single Cue group in the tendency to derive a linear rule favoring
greener stimuli causing the outcome rather than bluer stimuli.3

The gradients for the Linear subgroups are presented in Figure
6. The Linear gradients are collapsed over reported direction (bluer

vs. greener more likely to lead to the outcome) so that S11 was
always the stimulus that should be given the highest probability of
leading to the outcome according to the training contingencies in
the Differential group or the reported rule in the Single Cue group
(see online supplemental materials for a more thorough breakdown
of the linear gradients as well as the gradients from subgroups with
small ns). There was a significant linear trend in both the Single
Cue, F(1, 42) � 49.7, p � .001, �p

2 � .542, and Differential
groups, F(1, 33) � 110.0, p � .001, �p

2 � .769. However, the
gradient in the Differential group was significantly steeper than in
the Single Cue group, F(1, 75) � 14.6, p � .001, �p

2 � .163. This
suggests that while the pattern of generalization was consistent
across Single Cue and Differential groups, the presence of a CS�
can be seen to strengthen belief or confidence in a linear rule
because those participants had experience with an additional point
along the dimension.

Similarity subgroups. For the Similarity subgroups, there was
an overall quadratic trend, F(1, 17) � 131.0, p � .001, �p

2 � .885,
which interacted with conditioning group, F(1, 17) � 10.6, p �
.005, �p

2 � .385, reflecting the fact that the quadratic trend for the
Differential Group was stronger than for the Single Cue group. To
show that the gradient was indeed peaked, planned t tests were
carried out for both groups. There was a significant increase in
ratings from S1 to the CS� for both the Single Cue, t(7) � 2.90,
p � .023, SEM � 12.53, and Differential Group, t(10) � 7.53, p �
.001, SEM � 10.00, and a significant decrease in ratings from the
CS� to S11 for both the Single Cue, t(7) � 8.12, p � .001, SEM �
5.73, and Differential Group, t(10) � 4.49, p � .001, SEM �
11.03. Thus, it is clear that peaked gradients were exhibited in both
Similarity subgroups after single cue and differential training, but
that the addition of the CS� in the Differential group sharpened
the gradient.

It is interesting to note that in the Similarity subgroup of the
Differential group, the peak of the causal ratings was actually not
at the CS�, but rather at S7, the stimulus predicted to have the
highest ratings in a peak-shifted gradient. If it is accepted that
participants are able to learn associatively and consciously report
using similarity as the basis of their generalization then, at first
glance, this result may be interpreted as evidence of associative
learning in a small subset of participants. However, planned t tests
revealed that although the fall in accuracy from S7 to S11 was
significant, t(10) � 4.85, p � .001, SEM � 10.91, the increase in
accuracy from S6 to S7 was not significant, t(10) � .339, p � .742,
SEM � 9.82. Furthermore, only one participant from this subgroup
gave a numerically higher rating to S7 over S6 (see online sup-
plemental materials for the gradients for each individual). Thus,
there was no statistical evidence for a classic peak shift (significant
rise and fall in causal ratings) in the Similarity subgroup who
underwent differential training.

To check whether the failure to find a significant peak shift in
the Differential-Similarity subgroup was a genuine null effect or
because of limited power in the small subgroup, we conducted
additional Bayes Factor (BF) t tests using the BayesFactor package

3 Based on responses in the questionnaire, one potential reason for this
imbalance is that a large number of participants associated the color green
with “go,” and thus arbitrarily chose linear rules in this direction in the
Single Cue group.

Figure 5. Overall generalization gradients for both groups in Experiment
1. The CS� (a bluey-green circle) was S6 on the dimension, and S1 and
S11 represented the extreme hue values on the dimension (blue or green,
depending on counterbalancing). Within-subject error bars calculated ac-
cording to the method proposed by Cousineau (2005) with the correction
by Morey (2008).
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in R using the default scale parameters. These t tests assume a
Cauchy prior distribution over possible effect sizes concerning the
difference between two samples, allocating highest prior probabil-
ity to small effect sizes (see Rouder et al., 2009). A BF10 � .33 is
usually taken as moderate evidence in favor of the null hypothesis
(no difference between samples), a BF10 � 3 taken as moderate
evidence in favor of the alternative hypothesis (a difference be-
tween samples), and a BF10 between .33 and 3 indicates indeter-
minate evidence that does not clearly favor either the null or the
alternative hypothesis. Using this Bayesian t test, we obtained a
BF10 of 1515.1 (strong evidence in favor of the alternative hy-
pothesis) for the fall in causal ratings from S7 to S11, but a BF10

of .240 (moderate evidence in favor of the null hypothesis) for the
rise in causal ratings from the CS� to S7. Thus, although the size
of the Differential-Similarity subgroup was small, there was evi-
dence in favor of the null hypothesis (i.e., no peak shift) rather than
indeterminate evidence.

No relationship subgroup. There were a large number of
participants in the Single Cue group who reported no relationship
between the stimuli and the outcome (n � 18) compared with the
Differential group (n � 1). For this subgroup, the linear trend was
not significant, F � 1, and the quadratic trend was marginally
nonsignificant, F(1, 17) � 4.30, p � .054, �p

2 � .202, confirming
that the gradient in the No Relationship subgroup was relatively
flat.

Summary

There was generally good correspondence between reported
rules and generalization gradients along the hue dimension, and the
shape of the overall gradients could be decomposed into distinct
linear and peaked gradients exhibited in the Linear and Similarity
subgroups respectively. The numerical peak in the overall gradient

in the Differential group was not at the CS� but at the test
stimulus slightly displaced from CS� in the direction away from
CS�. The gradient did not decline at the extreme end of the
dimension as expected in a classic peak shift, but this result can be
attributed to the relatively small number of participants generaliz-
ing on the basis of similarity as compared with those using a linear
rule. It follows that a more classic peak shift pattern may have been
found had the ratio of Similarity to Linear subgroups been higher.

Experiment 2

The aim of Experiment 2 was to investigate whether peak shift
could be mediated through a mixture of generalization rules used
by different subgroups in a fear conditioning paradigm. Fear
conditioning more closely approximates traditional animal gener-
alization studies in using a biologically significant outcome, and
hence may provide a better chance of observing participants who
generalize on the basis of similarity. Moreover, in a fear condi-
tioning study with humans, Wong and Lovibond (2017) found an
approximately equal number of participants using linear and sim-
ilarity rules in generalization, albeit along a different (noncontin-
uous) stimulus dimension to that studied here. According to our
mixture-of-rules account, such a balance of linear and similarity
rules should lead to an overall peak shift in generalization. We
measured outcome expectancy, widely regarded as a valid index of
fear conditioning (Boddez et al., 2013), as well as skin conduc-
tance.

Like Experiment 1, this study used stimuli varying in blue-green
hue for training and generalization. However, pilot testing showed
that a large number of participants in the Differential group failed
to acquire the discrimination. This was most likely because of the
longer ITI needed to allow skin conductance to return to baseline
on each trial. Thus, the hue dimension was extended slightly to
increase the perceptual discriminability of the CS� and CS�.

Method

Participants. 110 University of New South Wales students
(69 women, Mage � 20.5, SD � 3.79) participated in exchange for
partial course credit or payment (AUD$15). Participants were
randomly allocated to the Single Cue group (n � 54) or the
Differential group (n � 56). The same exclusion criteria were used
as in Experiment 1. Four participants were excluded because they
indicated that they were colorblind, and a further 36 participants
failed the training criterion. After exclusions, 71 participants re-
mained (33 in the Differential group and 38 in the Single Cue
group).

Table 1
Number of Participants in Each Rule Subgroup in Each Experiment

Experiment Group Linear Similarity No relationship Other

1 Single Cue 43 (58.9%) 8 (11.0%) 18 (24.7%) 4 (5.5%)
Differential 34 (73.9%) 11 (23.9%) 1 (2.2%) 0 (0%)

2 Single Cue 8 (21.1%) 14 (36.8%) 14 (36.8%) 2 (5.3%)
Differential 14 (42.4%) 18 (54.5%) 1 (3.0%) 0 (0%)

Note. Percentages expressed according to the number of participants in each group in each experiment (i.e.,
row totals).

Table 2
Number of Participants Who Reported a Linear Rule in
Each Direction

Experiment Group Consistent Inconsistent Greener Bluer

1 Single cue 35 8
Differential 32 2 17 17

2 Single cue 5 3
Differential 14 0 8 6

Note. Rules are expressed as being either consistent or inconsistent with
the training contingencies and whether they reported that a greener or bluer
stimulus was more likely to lead to the outcome. Note that the consistent/
inconsistent coding is orthogonal to the greener/bluer coding of the linear
rules.
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Apparatus. The shock was delivered through stainless steel
electrodes attached to the distal and middle segments of the par-
ticipants’ index finger of their nondominant hand. The electrodes
measuring skin conductance level (SCL) were attached to the
distal and proximal segments of the ring finger of the same hand.
Isotonic gel was applied to the skin conductance electrodes unless
the initial reading was very high, and all electrodes were secured
with Leukoplast tape.

A semicircular dial with a rotary pointer was clamped to the
table in front of participants in front of their dominant hand. A
label was placed on the dial such that (approximately) 0 degrees
represented 0% expectancy of shock (accompanied with the words
“CERTAIN NO SHOCK”) and 180 degrees represented 100%
expectancy of shock (accompanied with the words “CERTAIN
SHOCK”), and just under 0 degrees was labeled “Off.” Tick marks
were placed at intervals of 10. The presentation of stimuli, instruc-
tions, and triggering of shocks was controlled by Matlab and
programmed using the Psychophysics Toolbox (Brainard, 1997;
Pelli, 1997). Skin conductance was recorded throughout the whole
experiment using AD instruments hardware and LabChart soft-
ware.

Procedure. Experiment 2 was approved by the University of
New South Wales Human Research Ethics Committee. The exper-
iment was composed of a training phase (where the shock elec-
trodes were detached for the first two blocks and attached for the
last block), an expectancy rating test phase with the shock elec-
trodes detached, a skin conductance test phase where the shock
electrodes were reattached, and a written questionnaire (see online
supplemental materials for additional details). The reason for ad-
ministering both training and test in two separate phases, one with
the electrodes attached and one without, was to minimize habitu-
ation to the shock as much as possible (as in Wong & Lovibond,
2017). Participants were screened for heart conditions, and under-
went a shock work-up procedure to select an appropriate level of
shock prior to beginning the experiment. Throughout the experi-

ment, the participant was seated in a dimly lit cubicle with the door
closed while the experimenter monitored the experiment from
outside. As in Experiment 1, participants were randomly allocated
to either the Single Cue or Differential group and dimension
counterbalancing (green to blue or blue to green) was matched
between groups.

Phase 1 (Training—electrodes detached). Similar to Exper-
iment 1, the training phase consisted of 12 presentations of each
stimulus (12 trials in total for the Single Cue group and 24 trials in
total for the Differential group), with the CS� reinforced at 75%
and the CS� never reinforced. Trials were randomized in the same
way as Experiment 1, ensuring that the first CS� trial of each
block was reinforced. Each stimulus consisted of a colored circle
with a radius of 200 pixels presented in the middle of the screen.
The hue values for the dimension were expanded by 10%, keeping
the same hue values for the CS� (S6, the midpoint, see online
supplemental materials). The saturation, brightness values, and
background color were the same as Experiment 1.

The trial structure consisted of a 10-s baseline period, a 10-s
stimulus presentation period, a 2-s period where feedback was
either presented or not presented, a 2-s period where participants
were presented with the message “Please turn the expectancy dial
back to the ‘Off’ position,” and a variable ITI period (ranging
between 5 and 15 s in Phases 1 and 3, and between 15 and 25 s in
phases 2 and 4).

Phase 2 (Training—electrodes connected). After eight trials
in the Single Cue group, or 16 trials in the Differential group had
been completed, the program froze for 30 s, and instructions came
on screen asking participants to wait for the experimenter. The
experimenter went into the cubicle to reattach the shock electrodes
and verbally reiterated that they would now be receiving an actual
shock in addition to the picture of shock, and that they should use
what they had learned in the first phase to continue making
expectancy ratings in Phase 2. Phase 2 (the last four or eight trials
in the Single Cue and Differential group, respectively) ran exactly

Figure 6. Generalization gradients for each rule subgroup in Experiment 1. The “linear” subgroup reported
generalizing on the basis of a stimulus relation (i.e., greener or bluer stimuli led to a higher likelihood of the
outcome), the “similarity” subgroup identified a single stimulus (i.e., the conditioned stimulus [CS]�) leading
to the outcome with all other stimuli having a lower or zero likelihood of leading to the outcome, and the “no
relationship” subgroup reported that there was no relationship between the stimuli and outcomes. Note that for
the Single Cue group, linear gradients are plotted in the reported direction of the rule. Within-subject error bars
calculated according to the method proposed by Cousineau (2005) with the correction by Morey (2008). See the
online article for the color version of this figure.
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the same way as Phase 1, except that a shock of 0.5-s duration was
delivered via the electrodes at the same time as the onset of the
shock feedback picture.

Phase 3 (Expectancy Generalization Test— electrodes
disconnected). After Phase 2 had finished, participants were told
that they would receive a break from shocks and the electrodes
were disconnected again. The experimenter explained that in the
following phase they would no longer receive feedback or shocks,
but that they should continue to make “hypothetical” expectancy
ratings as if the electrodes were still connected and shock were still
possible. After checking for understanding, the experimenter left
the cubicle. The expectancy test consisted of 11 trials—one pre-
sentation of each of the generalization stimuli in randomized order.

Phase 4 (Skin Conductance Generalization Test—electrodes
connected). After Phase 3, participants were told that now it was
possible to receive shock again, and the experimenter reconnected
the shock electrodes. The skin conductance test consisted of five
stimuli only—S1, S4 (CS�), S6 (CS�), S7, and S11. Each stim-
ulus was presented once in randomized order, and no shocks were
presented in this phase.

Questionnaire. At the end of the experiment, all electrodes
were detached and the participant was led outside the cubicle to
complete a questionnaire. The questionnaire was similar to that
used in Experiment 1, except that the rules and questions were
phrased in terms of predicting shock. A total of 25 participants
were classified into a subgroup based on their reported rule, while
the forced-choice question was used for the remaining participants.

Results and Discussion

There were no significant results in the skin conductance data in
generalization testing, and in general, the data were highly vari-
able. As such, they will not be presented here (see online supple-
mental materials for analysis of the skin conductance data).

Training. In expectancy ratings, there was a significant linear
increase in ratings for the CS� in the Single Cue group, F(1,
37) � 20.1, p � .001, �p

2 � .352. In the Differential group, ratings
for the CS� were significantly higher than ratings for the CS�
overall, F(1, 32) � 553.1, p � .001, �p

2 � .945. Again, there was
a significant interaction between the linear trend in ratings for the
CS� and CS�, F(1, 32) � 174.3, p � .001, �p

2 � .845, indicating
that expectancy ratings for the CSs diverged over training and that
participants learned the discrimination (Figure 7).

Generalization Test. Figure 8 displays the overall general-
ization gradients in each group. There were some similarities to
Experiment 1, but also some important differences. The gradient
for the Single Cue group appears to be symmetrical and more
peaked than in Experiment 1. In the Differential group, the gradi-
ent now appears distinctly peak-shifted, with a clear decrease on
the extreme right of the dimension that was not present in Exper-
iment 1. Similar to Experiment 1, there was an overall linear, F(1,
69) � 47.2, p � .001, �p

2 � .406, and quadratic trend, F(1, 69) �
34.1, p � .001, �p

2 � .330. The linear trend interacted with group,
F(1, 69) � 26.3, p � .001, �p

2 � .276, while the quadratic trend did
not, F � 1. Again, we can conclude that adding the CS� in the
Differential Group changed the shape of the generalization gradi-
ent.

As in Experiment 1, there was a significant linear trend in the
Differential group, F(1, 32) � 63.7, p � .001, �p

2 � .666, but not

in the Single Cue group, F(1, 37) � 1.72, p � .198, �p
2 � .044.

Both the Single Cue, F(1, 37) � 14.9, p � .001, �p
2 � .287, and

Differential groups, F(1, 32) � 20.6, p � .001, �p
2 � .392, showed

a significant quadratic trend in their overall gradients. To further
test whether the Single Cue group’s gradient was peaked, planned
t tests were conducted. The comparison between S1 and the CS�
was significant, t(37) � 3.91, p � .001, SEM � 6.93, but the
comparison between the CS� and S11 was marginally nonsignif-
icant, t(37) � 1.89, p � .066, SEM � 8.32.

To test whether a peak shift occurred in the Differential group,
the peak (S7) was compared with S6 (CS�) and S11 (the end-
point). There was a significant rise between the CS� and S7,
t(32) � 2.12, p � .042, SEM � 6.27, and a significant fall from S7
to S11, t(32) � 3.44, p � .002, SEM � 6.72. Thus, the Differential
group showed a significantly peak-shifted gradient.

Subgroup analysis. Figure 9 shows the gradients in expec-
tancy ratings obtained for each rule subgroup in the Single Cue
(left panels) and Differential (right panels) groups. The number of
participants assigned to each rule subgroup is shown in Table 1
(see online supplemental materials for the gradients from sub-
groups with small n). The table shows the ratio of the Similarity to
Linear subgroup participants is more balanced in this experiment
than in Experiment 1.

Linear subgroups. For participants who reported using a lin-
ear rule (see Figure 9), there was a significant linear trend, F(1,
20) � 45.8, p � .001, �p

2 � .696, which, unlike Experiment 1, did
not interact with group, F(1, 20) � 1.16, p � .295, �p

2 � .055.
Unsurprisingly, the significant linear trend was present in both the
Single Cue, F(1, 7) � 17.5, p � .004, �p

2 � .715, and Differential
groups, F(1, 13) � 36.9, p � .001, �p

2 � .739.
Similarity subgroups. Like Experiment 1, there was a signif-

icant overall quadratic trend, F(1, 30) � 32.2, p � .001, �p
2 � .517,

which interacted with group, F(1, 30) � 13.3, p � .001, �p
2 � .307,

Figure 7. Shock expectancy ratings over stimulus presentations in train-
ing for Experiment 2. The CS� was reinforced at a rate of 75% and the
CS� was never reinforced. Within-subject error bars calculated according
to the method proposed by Cousineau (2005) with the correction by Morey
(2008).
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again reflecting the sharper gradient seen in the Differential group.
Planned t tests comparing S1 to S6 and S6 to S11 were both
significant, for both groups, ts(13) � � 3.24, p � .006, SEM �
10.41, indicating peaked gradients. Again, it is interesting to note
that the gradient in the Differential group appears to be peak-
shifted, with the highest ratings given to S7, as in Experiment 1.
However, while the decrease in ratings from the peak (S7) to S11
was significant, t(17) � 4.63, p � .001, SEM � 8.14, the increase
from CS� to S7 was not, t � 1 (see online supplemental materials

for the individual gradients from the Differential-Similarity sub-
group). We conducted the same Bayesian t tests as in Experiment
1 to verify this null effect. Like Experiment 1, there was strong
evidence for the fall in ratings from S7 to S11, BF10 � 130.2, but
there was moderate evidence in favor of the null hypothesis when
comparing ratings from the CS� to S7, BF10 � .290. Thus, the
Bayesian t tests support the hypothesis that participants gave the
same ratings for CS� and S7.

No relationship subgroup. Despite the appearance of a
peaked gradient in the No Relationship subgroup in the Single Cue
group, there were no significant linear, F � 1, or quadratic trends,
F(1, 13) � 2.88, p � .114, �p

2 � .181. There was also no
significant difference between ratings of S1 and of the CS�,
t(13) � 1.97, p � .070, SEM � 12.13, nor between the CS� and
S11, t(13) � 1.67, p � .120, SEM � 14.00.

Summary

Experiment 2 showed similar results to Experiment 1 in that the
empirical generalization gradients corresponded to participants’
reported rules. In this experiment, and consistent with previous
animal conditioning studies, an overall peak-shifted gradient was
found in the Differential group, and an overall peaked gradient was
found in the Single Cue group. As we predicted, these overall
gradients can be explained through a combination of the distribu-
tion of rule subgroups, and the different gradients exhibited by
each subgroup. While the proportion of participants generalizing
on the basis of similarity did not differ greatly between condition-
ing groups (Table 1), participants in the Differential group primar-
ily derived linear rules in the direction consistent with their train-
ing contingencies, while participants in the Single Cue group did
not derive linear rules in a consistent direction. This shift in the
direction of linear rules as result of differential training led to an
overall peak-shifted gradient in the Differential group that was not
present in the Single Cue group.

Figure 8. Overall generalization gradients for both groups in Experiment
2. The CS� (a bluey-green circle) was S6 on the dimension, and S1 and
S11 represented the extreme hue values on the dimension (blue or green,
depending on counterbalancing). Within-subject error bars calculated ac-
cording to the method proposed by Cousineau (2005) with the correction
by Morey (2008).

Figure 9. Generalization gradients for each rule subgroup in Experiment 2. The “linear” subgroup reported
generalizing on the basis of a stimulus relation (i.e., greener or bluer stimuli led to a higher likelihood of the
outcome), the “similarity” subgroup identified a single stimulus (i.e., the CS�) leading to the outcome with all
other stimuli having a lower or zero likelihood of leading to the outcome, and the “no relationship” subgroup
reported that there was no relationship between the stimuli and outcomes. Note that for the Single Cue group,
linear gradients are plotted in the reported direction of the rule. Within-subject error bars calculated according
to the method proposed by Cousineau (2005) with the correction by Morey (2008). See the online article for the
color version of this figure.
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Overall, the generalization gradients obtained within each rule
subgroup were broadly consistent with Experiment 1, despite the
introduction of a biologically relevant shock outcome, the slight
extension of the hue dimension, and the increased difficulty of
learning introduced by lengthening the ITI. However, the Exper-
iment 2 results extend those of Experiment 1 in an important way
by finding clear evidence of overall peak shift, which was based on
a mixture of generalization rules across different subgroups.

General Discussion

In the current studies, we demonstrated that the shape of em-
pirical generalization gradients conformed to participants’ reported
rules, and further, that a peak-shifted gradient could be found at the
group-level by averaging subgroups of participants who reported
different generalization rules. Notably, we showed that in fear
conditioning, an overall peak shift in generalization of outcome
expectancy along a perceptual dimension was the result of a
mixture of gradients from participants who reported generalizing
on the basis of a relational rule, and from those who reported
generalizing on the basis of similarity to the trained CS�. These
results demonstrate the importance of considering individual dif-
ferences in generalization rules, and show that peak shift in hu-
mans can result from averaging distinct gradients arising from
separate rule subgroups.

In a causal judgment paradigm (Experiment 1) and a fear
conditioning paradigm (Experiment 2), we found generalization
gradients in causal judgments (Experiment 1) and shock outcome
expectancy (Experiment 2) that corresponded to participants’ ver-
balizable rules. A linear generalization gradient was exhibited by
a subgroup who reported generalizing on the basis of a relational
(linear) rule, and a peaked gradient was found in the subgroup who
reported generalizing according to stimulus similarity to the CS�.
Participants reporting no relationship between the stimuli and the
outcomes exhibited noisy, but mostly flat gradients. It is worth
highlighting that although the gradients displayed in the Linear
subgroups of the Differential group are consistent with a relational
rule (i.e., increasing along the hue continuum in the direction of the
CS� and away from the CS�), the gradients appeared to be more
like a step function than a linear function (Figures 6 and 9). In both
experiments (especially Experiment 2), the gradient between the
CS� and CS� appears to be steep but the gradient beyond the
CS� is quite flat. This pattern of results might be explained if
participants notice the difference between the CS� and the CS�
and classify one stimulus as “green” and the other as “blue” during
differential training. The use of these labels might facilitate sorting
of the generalization stimuli into these two categories on test,
effectively treating stimuli on the extreme ends of the dimension as
equivalent and producing flat gradients at each end. Despite this,
the overall pattern of results broadly replicate the findings of
Ahmed and Lovibond (2016, 2017), and Wong and Lovibond
(2017) but with a continuous stimulus dimension (hue), which
overcomes issues with the stimuli used in these previous studies
(e.g., the use of intensity or noncontinuous dimensions).

A Rule-Based Explanation of Peak Shift

The key novel finding from our study is that peak shift can be
a result of averaging group data, and that it can be decomposed

into distinct linear and peaked gradients by asking participants to
report their generalization rules. The finding of a significant over-
all peak shift was restricted to Experiment 2 and appeared to be
mediated by the relative proportion of participants reporting linear
as opposed to similarity-based generalization rules. Therefore, an
overall peak shift might only be obtained by averaging subgroups
of participants who primarily report generalizing on the basis of
either a linear or similarity rule when the numbers of participants
in each subgroup are roughly equal. Evidence for overall peak shift
was weaker in Experiment 1, when there was a higher proportion
of linear rules (and fewer similarity rules) reported by those in the
Differential condition.

Given the many differences between the paradigms used in the
two studies, we can only speculate about the reasons for differ-
ences in the distribution of rule subgroups. One likely possibility
is that the higher proportion of linear rules in Experiment 1 was
because of the considerably shorter ITI used in that study com-
pared with Experiment 2. The short ITI means that “extreme”
values on the test dimension were more likely to appear close
together in time. This contrast may have highlighted the hue
relations (i.e., greener and bluer), producing a higher proportion of
linear rules. The fact that many participants in the Single Cue
group reported linear rules supports this idea, because they only
had experience with a single point on the dimension and yet
reported a linear rule based on this ambiguous information.

One limitation of Experiment 2 is that we did not obtain an
overall peak shift in the skin conductance measure. While there
was evidence of acquisition in the skin conductance data (see
online supplemental materials), the generalization gradients ob-
tained were highly variable, and generally flat. This may be
attributed to our procedure (testing expectancy first, and skin
conductance separately) being insufficient in minimizing habitua-
tion to shock. Indeed, during training, the highest skin conductance
levels were recorded on the first reinforced CS� trial in both
Single Cue and Differential groups, and declined over the next
three CS� presentations (see online supplemental materials). Fear
learning is known to extinguish rapidly and has been noted to be
highly variable when using a single test trial for each generaliza-
tion stimulus (Vervoort, Vervliet, Bennett, & Baeyens, 2014),
meaning that power is limited when examining skin conductance,
especially after dividing participants into rule subgroups. How-
ever, when significant effects with skin conductance have been
found using paradigms broadly similar to those used here (Wong
& Lovibond, 2017), they have generally aligned with expectancy
ratings. This suggests that reported rules do predict generalization
patterns on physiological as well as self-report measures.

The mechanism through which peak shift occurs in our study is
quite different to that posited by associative models. Instead of the
CS� serving only as a source of inhibition, the CS� in our study
served to promote formation of linear rules in the direction con-
sistent with the experienced training contingencies. It is thus easy
to see how an overall area-shift could emerge by combining
gradients from the Linear and Similarity subgroups, while the
conditions needed for a peak-shift are considerably stricter and
dependent on the parameters of the linear and similarity gradients
themselves. This aligns with the fact that peak shift is a relatively
more elusive phenomenon in the human generalization literature
than area shift (see Honig & Urcuioli, 1981). It also provides a
possible explanation for why Wong and Lovibond (2017) did not
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find an overall peak shift in their study, since the salient nature of
their CS� (a dot in the center of a rectangular frame) meant that
the highest ratings were given to the CS� in both Linear and
Similarity subgroups. The current study is thus consistent with the
empirical results found in animals, but suggests that in humans,
peak shift can be mediated through the distribution of rule sub-
groups.

Note that our results do not allow us to determine whether these
differences in reported rules are because of differences in prior
experience, or reflect stable individual differences in ability or rule
use.4 There is evidence from related literature that working mem-
ory predicts whether individuals derive an abstract rule or rely on
exemplar memory in a function learning task (McDaniel et al.,
2014). To speculate, in our task, similarity-based responding may
be due to a more perceptual process that relies on episodic memory
and less on working memory. In contrast, the extraction of an
explicit linear rule might be seen as more abstract reasoning that is
dependent on an individual’s working memory capacity. In any
case, our experiments show that despite potential stable individual
differences in generalization rules, the distribution of rule sub-
groups is also clearly influenced by the nature of the task (causal
judgment vs. fear conditioning), as well as the choice of stimuli
(e.g., hue in our experiments vs. a noncontinuous dimension in
Wong & Lovibond, 2017).

Methodological Considerations

It is worth noting that generalization gradients can vary greatly
with the choice of testing procedure. Gradients are generally
steeper with within-subjects testing (the procedure used here) than
with between-subjects testing (e.g., see Vervliet, Iberico, Vervoort,
& Baeyens, 2011), implying that participants continue to learn
about the range of potential stimuli during the test phase (associ-
atively or through formation of new rules). In the context of our
experiments, it is reasonable to ask whether participants generalize
on the basis of rules formed during training on the very first test
trial, or whether they derive the rules throughout the test phase
while reflecting back on the training contingencies. Despite the
fact that we withheld feedback during the generalization test,
learning about the “stimulus space” might change or reinforce
rules that participants derived during training (see Livesey &
McLaren, 2009). Future studies that measure generalization
between-subjects is needed to confirm whether this occurs.

An additional consideration concerning our testing procedure is
that our choice of the CS� as S4 and CS� as S6 on the dimension
may have resulted in slight “adaptation level” effects (see Cape-
hart, Tempone, & Hebert, 1969; Thomas, 1993). According to this
adaption level account, during differential training, participants
would store a representation of the average stimulus value seen
overall (i.e., S5, the average of S4 and S6), and learn to respond by
comparing each training stimulus to this adaptation value. Over the
course of the randomized test trials, the adaptation level would
shift from S5 (the average of the training stimuli) to a value close
to S6 (the average of the test stimuli). If participants continue to
use a similar response rule as in training (e.g., “give high ratings
to stimuli greener than the adaptation level”), then this may result
in a peak shift. Although there is some evidence supporting this
account (e.g., Thomas, Mood, Morrison, & Wiertelak, 1991;
Thomas & Jones, 1962), many of these experiments have used

quite extreme asymmetrical testing to produce peak shifts (e.g.,
Thomas et al., 1991), while in the current experiments the adap-
tation level during training (S5) was quite close to the adaptation
level during test (S6). In addition, most of the previous demon-
strations of adaptation effects used absolute identification tasks,
where participants are instructed to remember and respond to a
single stimulus (the target stimulus) throughout the task. Arguably,
this task is rather different to that of a conditioning task.

Another issue is whether to treat generalization as an “active”
process that generates similar behavior to a novel (but different)
stimulus, or as a failure to discriminate between a generalization
stimulus (GS) and the CS� (Struyf, Zaman, Vervliet, & Van
Diest, 2015; see also the early debate between Hull, 1943; and
Lashley & Wade, 1946). Like the bulk of the generalization
literature, we have assumed that participants view each stimulus
along the dimension as a distinct stimulus and can discriminate
between them and therefore generalize actively. In other words, we
have assumed that generalization does not mean lack of discrim-
ination. While our stimuli were difficult to discriminate (as seen in
our high exclusion rates in the Differential group), the fact that we
imposed a training criterion, and the sensible generalization gra-
dients obtained suggest that participants could distinguish between
adjacent stimuli. Still, it would be interesting to explore whether
perceptual discrimination can predict the types of rules participants
derive, or examine the relationship between peak shift and ability
to discriminate between test stimuli in future studies.

Associative and Rule-Based Generalization

From an associative view, it may be argued that only the
Similarity subgroups are learning and generalizing associatively.
The peak-shifted shape of the gradients in both experiments is
certainly consistent with an associative account, although our tests
for this peak shift were not significant. Given many more partic-
ipants, these gradients may have shown a significant peak shift,
providing evidence of associative processes. While this is possible,
the individual gradients for each participant (see online supple-
mental materials) do not support this view. While many partici-
pants in the Differential-Similarity subgroups showed an area shift
in their gradients, very few (1/13 in Experiment 1 and 1/18 in
Experiment 2) showed a clear peak-shifted gradient. This stands in
contrast to the animal literature, where there is often a remarkable
uniformity in the shape of the gradients when peak shift is found
(e.g., see the individual gradients in Blough, 1973).

Another consideration is that our division of participants into
rule subgroups was based on self-report, and therefore may not
have been completely reliable. Thus, participants in the
Differential-Similarity subgroup may still have entertained some
belief in a linear rule. Therefore, if a significant peak shift in this
subgroup were obtained, it could still be explained as the result of
combining linear and similarity-based generalization. This idea
that participants may derive and express learning consistent with
multiple rules receives support from the categorization literature
where individual participants have been observed to display a
mixture of rule-based and exemplar-based (i.e., similarity-based)
responding (e.g., Erickson & Kruschke, 1998; Hahn, Prat-Sala,

4 Note that we did not find evidence interactions between rule subgroup
and training performance (see online supplemental materials).
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Pothos, & Brumby, 2010). A more comprehensive assessment of
rules taking into account belief in multiple rules would be needed
in order to judge whether peak shift (at an individual- or group-
level) is due to associative processes. Another possibility is to test
whether participants who display a peak shift can identify the
relational difference between the CS� and CS�, since an asso-
ciative model can predict peak shift in the absence of this infor-
mation. In summary, although the gradients exhibited in the
Differential-Similarity subgroups appear to be peak-shifted in both
experiments, there is still considerable variability at the subject-
level, and it is only when these gradients are combined with the
linear gradients that an overall peak shift emerges.

Conclusion

The present study adds to the literature which shows that there
are large individual differences in the strategies and rules that
participants use when confronted with learning and generalization
tasks (e.g., Erickson & Kruschke, 1998; Gluck et al., 2002; Little
& McDaniel, 2015; Smith & Sloman, 1994), and that verbal report
is a useful way of separating out these strategies. We extended the
results of Ahmed and Lovibond, 2016, 2017 and Wong and Lovi-
bond (2017) using a continuous stimulus dimension, showing that
generalization gradients differ according to reported rules. Cru-
cially, we showed how an overall peak-shifted gradient in fear
conditioning could be found by combining gradients from sub-
groups of participants who primarily reported generalizing on the
basis of a linear rule, or stimulus similarity. Our study shows that
peak shift can emerge from distinct rule subgroups and therefore
does not uniquely support traditional associative accounts based on
perceptual similarity. These results highlight the need for research-
ers in the field to look beyond group generalization gradients and
carefully examine qualitative differences between individuals in
their generalization strategies. Generalization in conditioning does
not always involve associative processes and, in some cases, is
better conceived of as a process of rule generation and application.
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