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Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental param-
eter in associative learningmodels. This RPE hypothesis provides a compelling theoretical framework for un-
derstandingDA function in reward learning and addiction. New studies support a causal role for DA-mediated
RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested
in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on
the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a
circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons
in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that
possibly contribute to pathological error signaling and addiction can be formulated and tested.
Introduction
Drugs of abuse enhance dopamine (DA) function by directly or

indirectly acting upon midbrain DA neurons to transiently in-

crease extracellular concentrations of DA (Di Chiara and Imper-

ato, 1988; Nestler, 2005; Sulzer, 2011). This DA enhancement

has been considered to mediate multiple effects of addictive

drugs, such as behavioral andmotor activation, and, most prom-

inently, the rewarding effects of these drugs. ‘‘Rewarding ef-

fects’’ maymeanmany things therefore more specific definitions

are required (Berridge and Robinson, 2003). Indeed, in addition

to producing positive hedonic reactions, rewards (both natural

and pharmacological) engage motivational systems involved in

the initiation and invigoration of action, as well as learning sys-

tems responsible for the reinforcement of the events (cues and

actions) leading to the receipt of the rewarding outcome.

Contemporary ideas of how DA is related to a drug’s rewarding

effect emphasize DA’s role in motivation and/or reward learning

(Berke and Hyman, 2000; Berridge, 2012; Berridge and Robin-

son, 1998; Bromberg-Martin et al., 2010; Everitt and Robbins,

2005; Salamone and Correa, 2012; Schultz, 2007, 2013; Wise,

2004).

In this review, we explore the implications for addiction for one

prominent idea of DA function, namely the signaling of reward

prediction errors (RPEs) by DA neurons (DA-RPE). According

to this view, DA neurons encode the discrepancy between

reward predictions and information about the actual reward

received (the RPE) and broadcast this signal to downstream

brain regions involved in reward learning. Because drugs of

abuse alter DA signaling, this theory has implications for addic-

tion. In a seminal paper, Redish (2004) presented a computa-

tional delineation of how RPEs may play a critical role in addic-

tion that has considerably shaped thinking in this area. In the

ensuing years, theoretical models have been updated and new

information regarding the neurobiology of both RPEs and addic-

tion has accrued, and the time is ripe for a re-examination of DA-

RPE and addiction.
We start from the position that neural computation of an RPE

by DA neurons contributes to learning about predictive cues and

actions that lead to that reward, and ask, if this is true for normal

learning, what role might DA-mediated RPEs play when subjects

learn about drug-related cues and actions? Is there something

different about RPE-mediated learning when the reward is an

addictive drug, and how does that relate to the development of

addiction?

To address these questions, we present recent studies that

confirm signaling of RPEs by DA neurons and discuss the

possible neural bases for RPE computation. We then ask how

the DA-RPE hypothesis might apply to addiction from both the

theoretical and neurobiological perspective. Our position is

that focused study of midbrain DAergic neurons and the neural

networks in which they are embedded is required for complete

understanding of DA both in normal learning and in addiction.

We use the RPEmodel as a tool to formulate specific predictions

regarding DA neural circuit function that can be tested using

contemporary neurobiological techniques. With this goal in

mind, we end with some suggestions of experiments that may

clarify the role of DA-RPE’s in addiction.

Reward-Related Activity in DA Neurons
In a series of seminal studies, Schultz and colleagues reported

that DA neurons in the ventral tegmental area (VTA) and the sub-

stantia nigra pars compacta (SNc) respond to natural reward,

such as palatable food, with a burst of action potentials (Ljung-

berg et al., 1992; Schultz et al., 1993). Notably, the sign

and magnitude of the DA neuron response is modulated by

the degree to which the reward is expected (summarized in

Bromberg-Martin et al., 2010; Schultz, 1998): surprising or

unexpected reward elicit strong increases in firing, whereas

anticipated reward produce little or no change. Conversely, if

an anticipated reward fails to materialize, DA neuron firing is

reduced below baseline. Thus DA neurons do not provide an

invariant readout of the presence of a given reward. Rather, it
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appears that DA neurons encode an RPE, reporting the discrep-

ancy between expected reward and reward that is obtained

(Montague et al., 1996; Schultz et al., 1997). Another hallmark

of the RPE-encoding DA neuron is the gradual transfer of neural

activation from reward delivery to cue onset during associative

learning. Early in learning, when cue-reward associations are

weak, DA neurons respond robustly to reward occurrence and

weakly to reward-predictive cues. As learning progresses neural

responses to the cue become pronounced and reward re-

sponses diminish. These canonical DA neuron responses to

reward, and then later to the reward-predictive cue, have been

observed in neural recordings from the VTA and SNc in primates

(Bayer and Glimcher, 2005; Matsumoto and Hikosaka, 2009;

Schultz et al., 1993) and rats (Pan and Hyland, 2005; Pan et al.,

2005), and in identified DA neurons in the VTA of mice (Cohen

et al., 2012).

RPEs matter because they are a central component of rein-

forcement learning theory, which posits that increases in phasic

DA to unpredicted reward are necessary for some types of

reward learning, allowing an organism to predict the value of an

upcoming event, thereby impacting subsequent decision-mak-

ing and behavior (Glimcher, 2011; Schultz et al., 1997; Schultz

and Dickinson, 2000). The relation of these ideas to reward-

seeking behavior, including to drug-seeking behavior and addic-

tion, is discussed in detail in the remainder of this review.

Other Nonreward DA Neuron Signals and DA Function

beyond RPE Signals

Salient nonreward stimuli are reported to induce DA neuron firing

(Bromberg-Martin et al., 2010). Salience responses might reflect

the potential behavioral importance of a stimulus, an inherently

rewarding property of some salient stimuli, or generalization of

neutral salient cues and reward cues when both are presented

within contexts associated with high reinforcement probability

(Kobayashi and Schultz, 2014). In addition, some DA neurons

are activated by noxious stimuli (Brischoux et al., 2009; Matsu-

moto and Hikosaka, 2007). These neural responses to salient

and aversive stimuli indicate that the concept of RPE may not

encompass the entirety of phasic DA signals. Notably, different

behavioral effects of phasic DA may arise due to activation of

particular populations of DA neurons with distinct projection tar-

gets. For example, in both primates (Matsumoto and Hikosaka,

2009) and rodents (Lammel et al., 2011; Lammel et al., 2012), pu-

tative salience/aversion-signaling DA neurons are found more

frequently in certain subregions of the SNc/VTA. In addition,

DA neuron burst firing at different behaviorally relevant times—

for example, immediately before an action versus upon delivery

of unexpected reward—may have distinct effects, such asmedi-

ating aspects of motivation versus learning, respectively. Finally,

an individual phasic DA signal occurring at a specific timemay be

multiplexed (a cue-triggered burst might modulate ongoing

behavior and contribute to future behavior via altered neuronal

plasticity). Multiple means by which DA affects behavior have

been proposed (for review, see Berridge and Robinson, 2003;

McClure et al., 2003; Niv et al., 2007; Robbins and Everitt,

2007; Salamone and Correa, 2012). Here we limit our discussion

to the potential role of a DA neuron-mediated RPE in learning and

addiction, and do not discuss other possible contributions of DA

neuron firing to behavior.
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PhasicDASignals as aBiological Implementation of RPE
Prediction Error in Formal Models of Learning

How do prediction errors aid learning? Theories of associative

learning have long recognized that simply pairing a cue with

reward is not sufficient for learning to occur. In addition to conti-

guity between two events, learning requires the subject to detect

a discrepancy (RPE) between an expected reward and the

reward that is actually obtained. This RPE acts as a teaching

signal used to correct inaccurate predictions. In a highly influen-

tial model, Rescorla and Wagner (1972) proposed that a predic-

tion error is computed at the end of individual learning trials

(when the reward is delivered or withheld), causing predictions

to be updated on a trial by trial basis. However, this separation

of time into discrete trials is arbitrary and predictions can

certainly be revised before the end of a trial as new information

becomes available. In response to this limitation, themore recent

temporal difference model of reinforcement (TD model), origi-

nating from computer science, assumes that predictions are

generated and updated continuously (Sutton and Barto, 1998).

At every moment, or state (St), a prediction error is computed

by comparing the information available at that moment (be it

an actual reward or a signal that reward is imminent) with what

was predicted a moment before (in the previous state, St-1).

The prediction error computed at a time t is thus defined by

Prediction errorðtÞ=Rt +VðStÞ � VðSt1Þ
where Rt represents the value of the outcome present at a time t,

and V(St) and V(St-1) correspond to the value of the state t

and t-1, determined by the predictions of upcoming reward

computed in the state t and t-1, respectively. Because subjects

value reward less as they become more distant in time, V(St) is

often corrected by a temporal discounting factor, omitted here

for simplicity. This prediction error computed at time t is then

used to update the predictive value of the preceding state

VðSt1Þnew=VðSt1Þold+hPrediction ErrorðtÞ
where h represents a learning rate parameter that determines

the weight of prediction errors in the process of updating predic-

tions. In addition, when the transition from one state to the next

depends on a specific action, the prediction error resulting from

this state transition can be used to update the value of the instru-

mental action

pðA jS t1Þnew=pðA jS t1Þold+h Prediction error

where p (A jS t-1) represents the propensity to perform the action

A when in the state St-1.

In addition to offering a ‘‘real-time’’ account of predictions and

prediction errors, an advantage of this model is that it accounts

for the reinforcement of cues and actions that are temporally

distant from the primary reward (credit assignment problem).

Indeed, this model predicts that as the value of a cue (or state)

that closely precedes the delivery of a reward increases, that

cue can then itself produce an RPE and thereby reinforce more

distal cues and actions. This back-propagation of RPE allows

for identification of the earliest predictor of a primary reward

and for the reinforcement of distal actions leading to an increase

in the prospect of reward. The TD reinforcement learning model



Figure 1. Activity of DA Neurons Complies
with Formal Models of Reinforcement
The temporal difference model of reinforcement
defines a reward prediction error (RPE) as the
discrepancy between the most recent reward
prediction (V(St-1)) and any new information
regarding reward, be it the reward itself (Rt) or a
signal that causes a change in the prospect of
reward (V(St)).
(A) Early in Pavlovian training, the surprising de-
livery of reward produces a positive RPE paralleled
by phasic activation of DA neurons.
(B) With sufficient training the presentation of a
cue signaling reward produces a positive RPE

while the reward itself no longer results in RPE. This shift is paralleled by a similar shift in the DA neuron response.
(C) Omission of expected reward results in a negative RPE, paralleled by a transient reduction of DA activity below baseline. ITI, inter-trial interval. (Adapted from
Morita et al., 2012.)

Neuron

Review
offers an elegant and parsimonious computational account for

many (but not all) learning phenomena related to changes in

cue/state values (Miller et al., 1995).

How well do TD prediction errors parallel DA responses? We

can see from Figure 1 that the TD reinforcement learning model

can account for phasic DA responses in most situations. This

striking parallel between theoretical concepts of prediction er-

rors and DA responses led to the hypothesis that phasic DA sig-

nals represent the biological implementation of RPEs (Schultz

et al., 1997). More specifically, it has been proposed that the

error signal carried by phasic DA activation is broadcast to fore-

brain regions involved in reward learning, such as the striatum,

where DA surges could function as teaching signals strength-

ening neural representations that facilitate reward receipt,

possibly via alteration of the strength and direction of synaptic

plasticity.

Evidence for DA Teaching Signals

The formulation discussed above describes behavioral learning

with great precision but our interest here lies in whether the

RPE model can help us understand how the brain can accom-

plish this learning. The parallel between phasic DA responses

(recorded in vivo), and RPE (computed in silicio) suggests that,

similarly to RPE, phasic DA responses constitute a teaching

signal that reinforces stimuli and actions leading to positive

outcome.

Studies using DA antagonists or selective DA lesions provide

considerable evidence for DA’s role in associative learning (for

review, see Costa, 2007; Wise, 2004). However, these tech-

niques affect tonic as well as phasic DA levels at the time of

training and often at the time of test which limits interpretation

of the results in terms of DA-RPE acting as teaching signals

(Costa, 2007). The advent of optogenetic approaches has al-

lowed for more specific tests of DA-RPEs because temporally

precise and selective control of DA neurons can be achieved

(Tsai et al., 2009; Witten et al., 2011). In transgenic animals ex-

pressing Cre recombinase under control of the tyrosine hydrox-

ylase promoter (Th::Cre), cre-dependent viral vectors injected

into the VTA/SNc can be used to induce expression of the

light-sensitive sodium channel, channelrhodopsin-2 (ChR2),

selectivity in DA neurons. Using these optogenetic tools, it has

been shown that rodents develop a preference for a compart-

ment paired with phasic, but not tonic, optical activation of

VTA DA neurons, and self-stimulate VTA or SNc DA neurons at
high rates (Ilango et al., 2014; Steinberg et al., 2014; Tsai et al.,

2009; Witten et al., 2011). These results are consistent with the

hypothesis that phasic DA signals encode positive RPEs, acting

as teaching signals.

The role of phasic DA signals in error-driven learning wasmost

clearly evidenced by manipulating DA neuron activity in a block-

ing paradigm (Steinberg et al., 2013). The phenomenon of

blocking is a powerful illustration of the role of prediction errors

in learning (Kamin, 1969). In this procedure, the acquisition of a

cue-reward association is impaired (or blocked) if another cue,

present in the environment at the same time, already signals

reward delivery. For instance, consider two cues (A and X), pre-

sented simultaneously (i.e., in compound) and followed by

reward delivery. Conditioning to one element of the compound

(X) is reduced—blocked—if the other element (A) has already

been established as a reliable predictor of the reward (Holland,

1999; Steinberg et al., 2013). This indicates that simple contiguity

between a stimulus and reward is not sufficient for conditioning;

learning requires the detection of a discrepancy between ex-

pected and actual events. In such a blocking procedure, activity

of DA neurons parallels RPEs (Waelti et al., 2001) providing

compelling correlative support for phasic DA signals and error-

based learning.

This notion was further tested using optical stimulation of VTA

DA neurons within the blocking experimental design (Steinberg

et al., 2013). In this study, stimulation was delivered at the time

of reward receipt, but only during the compound stimulus phase

when reward is fully predicted by the original training cue, and

when learning about the new cue presented in compound nor-

mally does not occur. When paired with the delivery of the

expected reward, phasic DA neuron stimulation produced an

artificial RPE sufficient to drive learning about the normally

blocked cue (Figure 2). Notably, the effect was temporally spe-

cific: equivalent stimulation in the intertrial interval not paired

with reward failed to unblock learning. These results indicate

that brief phasic stimulation of DA precisely timed with reward

presentation can mimic a normally absent RPE and rescue

blocked learning. The role of phasic DA activity as an error

correction signal was further demonstrated in a follow-up exper-

iment in which DA neuron photostimulation during the omission

of expected reward interfered with negative RPE signaling (en-

coded by pauses in DA neurons) and attenuated behavioral

extinction. Collectively these findings indicate that DA neurons
Neuron 88, October 21, 2015 ª2015 Elsevier Inc. 249



Figure 2. Optogenetic Stimulation of DA Neurons Mimics RPE and
Drives Reward Learning
(A) Behavioral protocol. Rats were trained to associate an auditory stimulus
(cue A) with sucrose. Once this association was learned, as attested by stable
levels of conditioned approach to the sucrose delivery port, a visual stimulus
(cue X) was added to the auditory stimulus, and this compound stimulus (cue
AX) was paired with the sucrose reward. During compound stimulus condi-
tioning sessions, DA neuronswere photoactivated during reward consumption
(Paired Stim.) to artificially create a normally absent RPE, the sucrose reward
being perfectly predicted at this stage by cue A. Control rats received pho-
toactivation of DA neurons during the intertrial interval (Unpaired Stim.). At test,
conditioned responding to stimulus X alone was tested in absence of sucrose
or optical stimulation.
(B) Optical stimulation of DA neurons during a compound cue trial. Optical
stimulation of DA neurons was synchronized with the delivery of the antici-
pated reward in paired stimulation rats; unpaired stimulation rats received
optical stimulation of DA neurons at a variable time after cue and reward
delivery.
(C) In rats that received previous stimulation of DA neurons during reward, the
presentation of cue X elicited approach to the location of previous sucrose
delivery. In contrast rats that received DA neuron manipulation unpaired with
reward showed low, or blocked, responding to cue X (Steinberg et al., 2013).
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encode RPE and drive error-correction learning, as in TD rein-

forcement models.

Computation of RPE in DA Neurons

If DA neuron firing provides an RPE that drives learning, then it

must be embedded in a circuit that allows extraction of that error

signal from neural elements encoding the expected and the

actual reward. What might an RPE-generating circuit look like?

Mapping the connectivity of midbrain DA neurons is critical for

determining how RPEs may be generated. VTA and SNc DA

neurons receive diverse excitatory and inhibitory inputs, ranging

from the prefrontal cortex (PFC) to the brainstem (Sesack and

Grace, 2010; Watabe-Uchida et al., 2012). In addition, VTA DA

neurons (and to some extent, SNc) are intermingled with GABA

and glutamate neurons, forming a complex local circuitry (Nair-

Roberts et al., 2008; Tepper and Lee, 2007; Yamaguchi et al.,

2013, 2015). These long- and short-range inputs, along with

intrinsic cellular properties, shape DA neuronal firing.

The generation of phasic bursting in DA neurons—the RPE

itself—depends on glutamatergic transmission (Grace et al.,

2007). Genetic inactivation of glutamatergic NMDA receptors

on DA neurons reduces phasic burst firing without affecting tonic

firing (Wang et al., 2011; Zweifel et al., 2009). Similar results are

observed after injection of NMDA receptor antagonists in the

VTA/SNc (Chergui et al., 1993; Sombers et al., 2009). Multiple in-

puts contribute to DA bursting (Grace et al., 2007); here we focus
250 Neuron 88, October 21, 2015 ª2015 Elsevier Inc.
on inputs for which we also have information regarding behav-

ioral correlates.

The pedunculopontine tegmental nucleus (PPTN) is one

important candidate via its glutamatergic (and cholinergic) inputs

to DA neurons (Kobayashi and Okada, 2007). PPTN neurons

show phasic responses to primary reward and reward cues

with shorter latency than DA neurons, and in projections to the

lateral SNc, encode reward and reward expectation (Hong and

Hikosaka, 2014). This region also responds to sensory cues prior

to learning (Pan and Hyland, 2005), suggesting the PPTN is

important for indicating the occurrence of stimuli. Recording of

midbrain DA neurons following pharmacological inactivation of

the PPTN confirmed that this region participates in cue-evoked

bursts in DA neurons (Pan and Hyland, 2005).

Another important source of glutamatergic (and peptidergic)

inputs to midbrain DA neurons, particularly in the VTA, is the

lateral hypothalamus (LH) (Watabe-Uchida et al., 2012). The LH

has long been associated with motivated behaviors. LH neurons

respond to primary reward and learned reward cues (Nakamura

and Ono, 1986; Nieh et al., 2015; Rolls et al., 1976), electrical

stimulation of LH neurons results in transient DA release in the

NAc (Lee et al., 2014), and optogenetic stimulation of LH inputs

to the VTA is reinforcing in rats and increases reward-seeking

behavior (Kempadoo et al., 2013; Nieh et al., 2015). Of note,

most reward-evoked activity in PPTN and LH neurons is not

modulated by expectation of reward (Kobayashi and Okada,

2007; Nakamura and Ono, 1986; but see Hong and Hikosaka,

2014). Overall, evidence suggests that PPTN and LH contribute

excitatory input critical to the computation of RPE in DA neurons

by providing information for the reward prediction, V(St) (i.e., the

learned cues) and/or information about the reward itself (Rt).

In addition to excitation by glutamate, burst firing requires

the reduction of inhibition onto DA neurons (Aggarwal et al.,

2012; Grace et al., 2007; Kitai et al., 1999). DA neurons receive

numerous GABAergic synaptic inputs; in the SN, 40%–70% of

synaptic inputs onto DA neurons are GABAergic (Henny et al.,

2012; Tepper and Lee, 2007). Some of this GABAergic modula-

tion may come from the LH. A recent study found that optoge-

netic stimulation of the LH-VTA GABAergic projection increased

feeding (Nieh et al., 2015), in agreement with a second study that

found photostimulation of LH GABAergic cell bodies also in-

creases feeding and is reinforcing (Jennings et al., 2015). This

GABAergic LH-VTA pathway may provide information about

reward that increases DA neuronal activity indirectly through a

VTA GABAergic interneuron, although there is also evidence

that this pathway directly innervates DA neurons (Nieh et al.,

2015).

Burst firing may also be controlled by the striatum. It has

been suggested that striatal GABAergic medium spiny neurons

(MSNs) participate in the computation of RPE by orchestrating

inhibition and disinhibition of DA neurons, providing inputs that

may encode Rt and V(St) (Aggarwal et al., 2012; Morita et al.,

2012, 2013). MSNs encode both reward and cue-induced

reward predictions (Nicola et al., 2004; Roesch et al., 2009; Stal-

naker et al., 2010) and project directly and indirectly onto DA

neurons. It has been hypothesized that cue- or reward-evoked

activation of D1 receptor-expressing (D1R) MSNs that project

predominantly to GABAergic neurons in the VTA or SNr, facilitate



Figure 3. Simplified Neural Circuit Diagram for the Computation of
the RPE by DA Neurons
The coordinated activation of this circuit by rewards and their predictors could
result in DA neuron firing in accordance with the RPE model. GPe, external
globus pallidus; LHb, lateral habenula; LH, lateral hypothalamus; MSN,
medium spiny neurons; PPTN, pedunculopontine tegmental nucleus; RMTg,
rostromedial tegmental nucleus; SN, substantia nigra; STN, subthalamic
nucleus; VP, ventral pallidum; VTA, ventral tegmental area.
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burst firing of DA neurons in the VTA or SNc respectively, via a

disinhibition mechanism (Morita et al., 2012). A recent study

used optogenetic circuit manipulation in vivo to test this idea

and confirmed that photostimulation of D1R MSNs activates

VTA DA neurons via inhibition of VTA GABA neurons (Bocklisch

et al., 2013). Hence this disinhibition pathway could be important

for RPEs.

Central to the idea that DA neurons encode an RPE is

the observation that reward-evoked activation progressively

declines as reward becomes expected. However, unexpected

delivery of the same reward results in strong responding of DA

neurons (Pan et al., 2005). Therefore, the neural inputs carrying

excitatory information about the reward (Rt) have not decreased

in efficacy over learning; instead this suggests that reward pre-

diction results in synaptic inhibition on DA neurons that opposes

the excitation produced by the reward itself. Reward predictions,

for example triggered by the cue, thus may have dual and oppo-

site influences on DA neurons: a rapid excitation followed by a

delayed inhibition that peaks at the time of the expected reward

and therefore can cancel reward-evoked excitation. Various

models have suggested that this inhibition component is driven

by MSNs in the patch compartment of the striatum directly pro-

jecting to DA neurons (e.g., Brown et al., 1999; Humphries and
Prescott, 2010). However, the projection-specific activation af-

forded by optogenetics has revealed that stimulation of direct

striatal inputs on DA neurons in the VTA or SNc evokes weak

to no inhibitory currents in DA neurons (Bocklisch et al., 2013;

Chuhma et al., 2011; Xia et al., 2011), indicating that these direct

afferents are relatively silent. More recently, it has been pro-

posed that the inhibitory component of reward prediction is

driven by D2 receptor-expressing (D2R) striatal MSNs, reaching

DA neurons in the SNc via the GPe, STN and SNr indirect

pathway (Morita et al., 2012). A similar mechanism of indirect in-

hibition from D2R MSNs to VTA DA neurons may exist, involving

VTA GABA neurons as the final relay (Groenewegen and

Berendse, 1990; Morita et al., 2012, 2013). In agreement, using

cell-type specific expression of ChR2, VTA GABA neurons

were shown to encode reward prediction with a ramping of activ-

ity and to inhibit DA neurons, a potential means for participating

in RPE computation (Cohen et al., 2012; Tan et al., 2012). Inter-

estingly, the multiple relays that compose this indirect pathway

could contribute to the time delay required for the computation

of the temporal difference (Aggarwal et al., 2012; Morita et al.,

2012, 2013); in this scenario, direct- as well as indirect-pathway

MSNs could encode reward predictions, which is consistent with

the observed synchronous activation of D1R and D2R MSNs

during reward seeking (Cui et al., 2013), but these predictions

would contribute differentially to RPE computation by disinhibit-

ing and inhibiting DA neurons, respectively. Consistent with this

latter idea, optogenetic stimulation in mice of D1R or D2R MSNs

contingent upon an action, increases or decreases, respectively,

the probability of the animal engaging in that particular action

(Kravitz et al., 2012). Of note, segregated cortical ensembles

are proposed to innervate direct and indirect pathway MSNs

thereby signaling the different states (S) from which predictions

(V[S]) can be derived (Morita et al., 2012; Takahashi et al.,

2011; Wilson et al., 2014).

What about the pause in firing in response to omission of an

expected reward? A parsimonious explanation is that this pause

in firing is driven by the same inhibitory mechanism that cancels

reward-evoked excitation. In addition, reward omissions, as well

as aversive outcomes, activate neurons in the lateral habenula

(LHb) (Matsumoto and Hikosaka, 2007), which indirectly inhibits

DA neurons via activation of GABAergic neurons in the rostrome-

dial tegmental nucleus (RMTg) (Hong et al., 2011; Jhou et al.,

2009). A role for LHb in negative prediction errors was recently

demonstrated by Tian and Uchida (2015), who examined neural

responses of identified DA neurons in awake behavingmice after

LHb lesions; they found a reduction both in the magnitude of the

firing rate decrease elicited by reward omission and in the total

number of units with a response to reward omission.

Using the information just described, a simplified circuit model

for the calculation of RPEs by DA neurons can be constructed

(Figure 3), in which LH and PPTN are proposed to critically

contribute to Rt, and direct and indirect pathway MSNs drive

the circuits that provide current and prior state values, respec-

tively (Aggarwal et al., 2012; Morita et al., 2012). We now in

principle have the neurobiological tools to test each element of

this proposed circuit. For example, behavior-related firing of

neuronal subtypes, such as DA neurons in the midbrain, or indi-

rect or direct pathway neurons in the striatum, can be measured
Neuron 88, October 21, 2015 ª2015 Elsevier Inc. 251
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during learning using photo-tagging (Cohen et al., 2012) or deep

brain calcium imaging (Jennings et al., 2015). The expression of

opsins or DREADDS in neurons afferent to the DA or GABA neu-

rons in the midbrain can permit excitation or inhibition in a pro-

jection-specific and temporally restricted manner (as in Lammel

et al., 2012; Mahler et al., 2014; Nieh et al., 2015; Tan et al., 2012;

van Zessen et al., 2012) to test specific predictions of the model

on learning and neural function. Identified synapses within this

circuit can be probed ex vivo for learning-related changes.

Note this circuit is undoubtedly a simplification; multiple inputs

may be required for any one computational component in the

TD equation, and individual inputs could partially compute an

RPE; for example PPTN neurons may encode primary reward

but a subset may encode reward prediction (V(St) + Rt; Hong

and Hikosaka, 2014) or LHb may partially encode prediction er-

ror (Rt�V(St-1); Matsumoto andHikosaka, 2007). In addition, this

circuit could interact with other neural circuits computing similar

error signals (Matsumoto and Hikosaka, 2007; McNally et al.,

2011). Recent reports of critical distinctions among spatially or

neurochemically different projections from the same brain region

to the VTA/SNc will need to be considered (e.g., Hong and Hiko-

saka, 2014; Nieh et al., 2015). Current technological advances

in measuring and manipulating genetically defined cell types,

including their neural projections, will allow testing and critical

model updating.

DAergic Projections and Broadcasting of RPE

The neuronal and behavioral effects of DA neuron bursting

necessarily depend upon which DA neurons fire and where

they project. Midbrain DA neurons send efferent projections to

many brain regions including the striatum, globus pallidus/

ventral pallidum, subthalamic nucleus, thalamus, amygdala,

BNST, prefrontal cortex, amygdala, and hippocampus (Beck-

stead et al., 1979; Gerfen et al., 1987; Swanson, 1982). The

dopaminergic projections to the striatum are topographically ar-

ranged, such that DA neurons in the VTA project to ventromedial

striatum, while DA neurons in the ventral SNc project to dorsolat-

eral striatum (Haber et al., 2000; Ikemoto, 2007). DA projections

are an integral part of the ‘‘spiraling’’ striatal circuits that empha-

size a progressive ventral to dorsal recruitment that occurs via

MSN feedback to DA neurons that innervate the neighboring

striatal circuit (Haber et al., 2000; Ikemoto, 2007).

Based on widespread DA projections, it has been argued that

DA release constitutes a global reinforcement signal, distributed

throughout target regions to strengthen neural representations

that facilitate reward receipt (Schultz, 1998). In agreement, DA

neuron activity and subsequent DA release have short- and

long-term effects on neural circuits; these consequences on

neuronal activity and plasticity are reviewed elsewhere (Gerfen

and Surmeier, 2011; Kreitzer and Malenka, 2008; Lovinger,

2010; Pignatelli and Bonci, 2015; Wickens, 2009). Continued

use of ex vivo measurements of synaptic changes in the context

of natural and drug reward learning will help clarify how the

phasic DA release of an RPE may induce plasticity that underlies

learned associations governing reward seeking behavior.

Role of DA Teaching Signals in Addiction
Learning to take drugs recruits associative learning processes.

Subjects learn to associate environmental cues with drug avail-
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ability and drug effects, and learn which specific action se-

quences are followed by drugs access. This is typically studied

in preclinical models in which laboratory animals are trained to

perform an instrumental response, such as a lever press, that

is followed by a sensory cue, such as a brief auditory stimulus,

that is predictive of intravenous (cocaine, amphetamine,

morphine) or oral (alcohol) drug delivery. Animals learn to repeat

the instrumental action to obtain more deliveries of drug. In other

studies, Pavlovian learning is modeled by repeated pairing of a

cue with drug delivery, without requiring the animal to emit an

action to receive the drug. If a DA-RPE signal is sufficient to pro-

mote learning about natural reward cues (Steinberg et al., 2013,

described above), is the DA-RPE signal sufficient for learning

about drug cues? Likewise, if DA-RPE signals support action

learning for natural reward outcomes, is the same true for drug

outcomes?

A key point linking drugs of abuse to DA is that addictive drugs

have direct and indirect pharmacological effects on DA neuronal

activity and release, thereby interactingwith DA systems in away

that natural rewards do not. In vivo microdialysis studies reveal

that cocaine, amphetamines, opiates, nicotine, cannabinoids

and alcohol all, to varying degrees, increase extracellular DA in

DA terminal regions, especially within the NAc and in some cases

within the VTA itself (Di Chiara and Imperato, 1988; Nestler,

2005; Sulzer, 2011). Many studies have shown that self-adminis-

tration of drugs of abuse depends largely (although not exclu-

sively) on DA transmission (Koob and Volkow, 2010; Nestler,

2005; Pierce and Kumaresan, 2006; Wise, 2004). While these

studies point to a general role of DA, the role of phasicDA signals

in the development of addiction remains largely unknown.

Indeed, prior studies necessarily used pharmacological and

neurochemical approaches that produce long-lasting effects

on DA transmission, which doesn’t allow one to separate effects

of basal DA levels resulting from tonic DA neuronal firing from

effects of phasic firing. This distinction is important because

it is the phasic DA responses that are implicated in learning

(Steinberg et al., 2013; Tsai et al., 2009).

Thus, if drugs of abuse act like natural reward uponDA systems

to drive learning via a RPEmechanism, then their sensory or phar-

macological attributesshouldactivatebursting inDAneuronsdur-

ing learning like natural rewardsdo. To address this possibility,we

can examine data obtained from in vivo fast scan cyclic voltam-

metry (FSCV), used to measure real-time rapid changes in striatal

extracellular DA fluctuations (‘‘transients’’) in relation to drug

administration or various behavioral events. DA transients are

dependent upon burst firing-induced release from DA neurons

(Sombers et al., 2009). In the awake animal, cocaine, amphet-

amine, ethanol, opioids, and nicotine acutely increase DA tran-

sients in theNAc (albeit with different potencies and timecourses)

and these increases are abolished by pharmacological suppres-

sion of DA neuron burst firing in the VTA (Cheer et al., 2007; Covey

et al., 2014; Daberkow et al., 2013; Vander Weele et al., 2014;

Wanat et al., 2009).Of note, cocainewas indeed found to increase

DA neuron burst firing in awake rats (Koulchitsky et al., 2012).

Similarities and Differences in Food- versus

Drug-Related DA Signals

When the reward is a sweet liquid or food pellet, reward-pre-

dictive cues and unexpected reward delivery elicit NAc DA



Figure 4. Differences between Food-
Related and Cocaine-Related Phasic DA
Signals in the NAc and Potential
Consequences for Learning
(A) Prior to learning, unexpected delivery of food
reward results inphasicDAsignals.Assubjects learn
that cue presentation signals food delivery, DA re-
sponses are transferred from the reward to the cue.
(B) When cocaine is the reward, each drug injec-
tion produces, with some delay, a burst of phasic
DA events as a consequence of the pharmaco-
logical actions of the drug. As with natural reward,
phasic DA responses progressively emerge to
the cue. Unlike food-induced DA signals, drug-
induced DA signals are not modulated by expec-
tations and persist throughout learning.

(C) Proposed consequences of these DA signals on learning. Food-evoked DA signals modulated by reward expectations promote learning until the
prediction matches the actual outcome, resulting in stable cue value after a few trials. In contrast, persistent cocaine-evoked DA signals continue to increase
the value of cocaine cues with every trial. Eventually, the value of cocaine cues surpasses the value of the food cues and can bias decision-making toward
cocaine.
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increases time locked to the behavioral events and expected

reward does not elicit DA changes (Clark et al., 2013; Day

et al., 2007; Flagel et al., 2011; Hart et al., 2014). Likewise, in

animals trained to press a lever for food, DA release in the NAc

is first elicited by response-contingent, but unexpected, food

reward. As learning progresses and animals learn to predict

food delivery, the phasic DA signal is transferred from the reward

to cues that signal reward availability and trigger the instrumental

response (Roitman et al., 2004), reflecting the backpropagation

of RPE described in the TD reinforcement model. Self-initiated

instrumental actions are also preceded by an increase in DA

release (Wassum et al., 2012), perhaps caused by external

cues or internal states unappreciated by the experimenter but

causing a sudden increase in reward prediction and therefore

an RPE (Wassum et al., 2012).

How does this compare to phasic fluctuations in DAmeasured

in the NAc during drug self-administration? During cocaine self-

administration, NAc DA also briefly increases prior to the instru-

mental response and in response to cues signaling drug delivery

(Phillips et al., 2003; Stuber et al., 2005b). Though coincident

with the lever press and drug infusion, the cue is the critical elic-

itor of this time-locked DA increase, as presentation of the condi-

tioned cue on its own is sufficient to induce a phasic DA increase

(Phillips et al., 2003; Willuhn et al., 2012).

The critical difference between food and drug self-administra-

tion resides in the response to the reward itself. While food

reward elicits a time-locked DA transient that progressively de-

creases as reward becomes expected (Figure 4A), the i.v. injec-

tion of cocaine elicits a delayed long-lasting increase in the

frequency and amplitude of DA transients that is not clearly syn-

chronized with specific behavioral events (Heien et al., 2005;

Stuber et al., 2005a). Importantly, these drug-induced DA tran-

sients do not appear to be modulated by drug expectation

(Figure 4B); they persist after the task is well-learned and the

drug reward well-predicted (Stuber et al., 2005a; Willuhn et al.,

2014). Although the overall basal frequency of DA transients

appears to be altered by chronic cocaine, the acute effect

of cocaine on transient changes in DA release is the same

whether the animal or the experimenter administers the drug

(Willuhn et al., 2014). As mentioned, other drugs of abuse also

increase the amplitude and/or frequency of DA transients, sug-
gesting they, too, would have this action after active self-admin-

istration.

Maladaptive Prediction Errors and Addiction

In the framework of the TD reinforcement model, the expecta-

tion-independent surge of DA induced by drugs of abuse could

contribute to drug-taking and, perhaps, addiction. Specifically,

it has been argued that drugs of abuse mimic a DA-RPE every

time the drug is consumed (Di Chiara, 1999; Redish, 2004) via

drug-induced increases in DA neuron firing and release. Over

repeated drug use, the repetition of these DA signals would

continue to reinforce drug-related cues and actions to patholog-

ical levels, biasing future decision-making toward drug choice.

This is in contrast to natural reward that produces error-correct-

ing DA-RPE signals only until the predictions match the actual

events. This viewpoint was expanded upon in a landmark paper

which examined the outcomes of incorporating a drug-induced

positive RPE signal in a TD learning computational model of

addiction (Redish, 2004). In this model, every time the subject

consumes a drug of abuse, a teaching signal is generated

increasing the value of the state leading to drug receipt. Impor-

tantly, this drug-induced teaching signal is not dependent on

the subject’s predictions but set at a single value, representing

the pharmacological effect of the drug on DA transmission.

Therefore, the model predicts that with repeated drug adminis-

tration, the value of states leading to drug receipt continues

to increase without bounds eventually surpassing the value of

states leading to natural reward (Figure 4C). As a result, when

given the choice between drug and natural reward (more exactly,

a choice between a state leading to drug and a state leading to

natural reward), the subject develops a bias toward drug that

strengthens with each drug use. In addition, this ever-increasing

state value predicts decreasing elasticity over time such that

experienced subjects are willing to emit considerable work for

a given drug reward.

This model of ‘‘persistent DA-RPE’’ provides a simple, yet

powerful, explanation for several aspects of addiction. For

example, it can explain the progressive allocation of more time

and effort to drugs of abuse, often at the expense of natural

reward and despite negative consequences (Deroche-Gamonet

et al., 2004; Perry et al., 2013; Vanderschuren and Everitt, 2004;

but see Lenoir et al., 2007).
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A limitation of this model is that each drug administration is

considered identical to the next in terms of consequences on

DA transmission and error correction, independent of previous

drug use history. This ignores the fact that drugs of abuse induce

neuroadaptations in multiple brain regions and circuits, including

the putative DA error correction circuit. Hence, as noted by Re-

dish himself (Redish, 2004), anymodel of addiction is incomplete

without integration of the growing body of literature on the neuro-

biological effects of chronic drug-taking. In the following sec-

tions, we will discuss how the implementation of drug-induced

DA-RPE in a biologically realistic circuit that integrates drug-

induced neuroadaptations and anatomical considerations could

extend our understanding of the role of DA-RPE in drug addiction

and resolve some of the limitations of the original model.

Drug-Induced Neuroadaptations: Consequences for
RPE Signaling
Drugs of abuse induce long-term neuroadaptations throughout

the mesolimbic system, which durably alter the behavioral and

neural effects of these drugs. A complete discussion of the na-

ture of these drug-induced neuroadaptations can be found else-

where (Hyman et al., 2006; Kalivas, 2009; Koob and Volkow,

2010; Luscher, 2013; Mameli and Luscher, 2011; Pignatelli and

Bonci, 2015; Walker et al., 2015). We will focus here on changes

in excitatory and inhibitory transmission in the VTA and examine

how these changes may affect striatal targets of DA neurons, as

well as the consequences for associative learning.

Sensitization of DA Responses

A well-studied adaptation to repeated administration of drugs of

abuse is sensitization. Sensitization is observed as the progres-

sive increase in a behavior, often locomotion, following repeated

administration of the same dose of drug (Robinson and Becker,

1986;VanderschurenandKalivas, 2000). Behavioral sensitization

induced by cocaine is accompanied by long-lasting increases in

AMPA receptor (AMPA-R)mediated excitatory postsynaptic cur-

rents (EPSCs) onto VTADA neurons (Ungless et al., 2001). In fact,

exposure to drugs including morphine, nicotine, and alcohol, all

increase AMPA-R-mediated currents on VTA DA neurons, an ef-

fect not observed with non-addictive drugs (Saal et al., 2003).

This form of plasticity likely results in enhanced activation of DA

neurons by glutamatergic input. Active cocaine self-administra-

tion similarly potentiates glutamatergic synapsesonVTADAneu-

rons for at least 3 months (Chen et al., 2008). This effect is also

observed after self-administration of food reward, although the

increaseonly lasts 7 days (Chenet al., 2008). Therefore, transitory

changes after natural reward may reflect normal learning,

whereas longer-lasting changes after cocaine self-administration

indicate an amplification of normal learning processes. Notably,

increases in excitatory input onto DA neurons are observed after

repeated experimenter-injected cocaine in the mouse in NAc-

projecting DA neurons, but not in PFC-projecting DA neurons in

the VTA, and not in DA neurons of the SNc (Lammel et al.,

2011). Repeated exposure to cocaine also reduces the strength

of inhibitory inputs on DA neurons, perhaps via an increase in

long-term depression (LTD) of these GABAergic synapses (Liu

et al., 2005; Pan et al., 2008) and/or the long-term potentiation

(LTP) of GABA transmission between striatal D1R MSNs and

VTA GABA neurons (Bocklisch et al., 2013).
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The cocaine-induced combination of potentiated excitatory

and reduced inhibitory inputs on DA neurons results in increased

excitability of DA neurons (Bocklisch et al., 2013; White et al.,

1995), which may be the basis for larger DA transients in the

NAc in sensitized animals in response to electrical stimulation

(Muscat et al., 1996; Ng et al., 1991; Williams et al., 1995). In

addition, although the effect of drug sensitization on cue- or

reward-evoked DA transients has not been reported, studies us-

ing in vivo microdialysis found that drug sensitization increases

NAc DA responses to drugs, drug-cues, and natural reward

(Addy et al., 2010; Fiorino and Phillips, 1999; Kalivas and Duffy,

1990; Williams et al., 1995). This potentiated DA response

is associated with facilitated acquisition of an instrumental

response for addictive drugs or natural reward (Ferrario and

Robinson, 2007; Horger et al., 1992; Horger et al., 1990; Olaus-

son et al., 2006; Piazza et al., 1989; Taylor and Jentsch, 2001;

Vezina et al., 1999). While this effect is often interpreted as sensi-

tization of motivational or incentive properties of rewarding stim-

uli (Robinson and Berridge, 2001), it could also be interpreted

as sensitization of reinforcing properties (i.e., ability to act as a

teaching signal) of rewarding drugs and their associated cues

(Redish, 2004; Zernig et al., 2007). According to this view, drugs

of abuse not only mimic RPE via their acute effect on DA trans-

mission, but also potentiate future drug- and cue-induced RPE

via long-lasting sensitization of mesolimbic DA circuits. As a

consequence, the value of drug-related cues and actions would

not follow a linear progression (as depicted in Figure 4C), but an

accelerated increase. It is not knownwhich glutamaterigic inputs

upon DA neurons undergo potentiation; in the context of the

current discussion, identifying the enhanced input(s) would be

of interest when considering possible drug-induced increases

in the information (V(St), Rt) they might carry.

Drug Neuroadaptations in the NAc—A Consequence of

DA-RPE?

Cocaine self-administration also induces long-lasting input-spe-

cific increases in excitatory synaptic transmission onto NAc

MSNs (Lee et al., 2013; Ma et al., 2014; Pascoli et al., 2014).

Using ChR2-assisted mapping to activate specific afferents

to D1R or D2R MSNs, changes at identified synapses can be

probed ex vivo after cocaine self-administration. These changes

are candidate substrates for learned processes that underlie

addictive-drug seeking behavior. In a recent example, enhanced

AMPA-R EPSCswere detected at excitatory inputs from the PFC

and the hippocampus to NAc shell D1R MSNs one month after

cocaine self-administration. Reversing these experience-depen-

dent synaptic changes via an optogenetic photostimulation LTD

protocol altered cocaine seeking-behavior in an input-specific

manner (Pascoli et al., 2014) strengthening the notion that

these drug-induced synaptic changes reflect critical experi-

ence-dependent neuronal changes that underlie drug-seeking

behavior. If a DA-RPE were required in some way for the forma-

tion of these experience-dependent synaptic alterations, then

this finding would support a role for the DA-RPE as a teaching

signal, driving later behavioral responses to drug-associated

cues and contributing to propensity for drug-seeking actions.

At the present time, it is not clear if these NAc changes induced

by cocaine self-administration require DA action at the synapse

for their formation; unlike the dorsal striatum, LTP and LTD of



Figure 5. Proposed Mechanism for the Accelerated Propagation of
RPE-DA Signals in Different Striatal Domains following Drug
Exposure and Its Consequence for Learning
(A) In drug naive animals the activity of midbrain DA neurons is tightly regulated
by local inhibitory GABA neurons. Unexpected reward activate dopamine
neurons in the VTA; the resulting DA release in the NAc promotes Pavlovian
(S-O) learning.
(B) Repeated exposure to cocaine increases the excitability of DA neurons by
potentiating striatal inhibitory inputs on midbrain local GABA neurons. Striatal
feedback on DA neurons progressively recruits more lateral DA neurons from
VTA to SN for encoding of RPE. The resulting emergence of DA signals in the
sensorimotor DLS reinforces S-R associations that contribute to rigid and
possibly compulsive drug-seeking behavior. ACC, anterior cingulated cortex;
DLS, dorsolateral striatum; DMS, dorsomedial striatum; NAc, nucleus ac-
cumbens; OFC, orbitofrontal cortex; SM, sensorimotor cortex; SN, substantia
nigra; VTA, ventral tegmental area; S-O, stimulus-outcome; A-O, action-
outcome; S-R, stimulus-response.
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excitatory inputs onto MSNs in NAc slices is not DA-dependent

(Fields et al., 2007; Lovinger, 2010; Nicola et al., 2000). Interest-

ingly, NAc cocaine-induced excitatory synaptic plasticity does

appear to be serially dependent on initial cocaine-induced syn-

aptic plasticity in VTA DA neurons (Mameli et al., 2009), and

this VTA plasticity is DA dependent (Schilstrom et al., 2006).

Note that DA neuron cotransmitters (peptides, glutamate) may

be released during DA neuronal burst firing and these coreleased

transmitters may be requisite for DA-RPE effects on learning and

behavior. Overall, there is a large amount of evidence for long-

lasting drug-induced alterations in synaptic function, both at

the level of the VTA and the NAc.

An intriguing shorter form of plasticity in the NAc core, consist-

ing of increases in excitatory inputs to MSNs and increases in

MSN spine diameter, is triggered by cocaine-associated cues

and cocaine itself when these events lead to relapse in an animal

model. This short-term plasticity is DA-dependent and is corre-

lated with the behavior, reversing within hours of the relapse

test (Gipson et al., 2013; Shen et al., 2014). This shorter form

plasticity could be an example of the effect of DA-RPE signals

on action selection, a possibility that remains to be tested. Of

note, because some D1R MSNs project back to the VTA, syn-
apsing upon GABA neurons (Xia et al., 2011), these short- and

long-term striatal synaptic changes may feed back into altered

computation of subsequent RPEs.

Regional Progression of DA-RPEs in Addiction

As mentioned, electrophysiological recordings found RPE-like

signals in VTA as well as SNc DA neurons suggesting that this

signal is a broadly propagating global reinforcement signal

distributed throughout the brain. However, more recent studies

using FSCV to directly measure phasic DA signals revealed

that DA-RPEs are not equally present throughout the striatum.

In naive untrained rats, unpredicted food delivery evokes phasic

DA increases in theNAc core but surprisingly not in the dorsome-

dial striatum (DMS) or dorsolateral striatum (DLS) (Brown et al.,

2011).

One possible explanation for this discrepancy between the

electrophysiological and FSCV data is differential dorsal and

ventral striatalmodulation ofDA levels at the synapseby variation

in DA transporter density, resulting in regional variation in reup-

take (Garris and Wightman, 1994), and by modulation of release

by cholinergic inputs on DA terminals (Threlfell and Cragg,

2011), both of which could alter synaptic DA. A second possibility

is that the discrepancy is due to differences in the amount of

training subjects typically receive in these experiments. In elec-

trophysiological recording studies with monkeys, subjects are

generally well-trained, while rats used in FSCV experiments

often have limited task experience. Therefore, it is possible that

extended training results in activation of additional DA neurons

including initially non-responsive neurons in the SNc. This hy-

pothesis suggests that region-selective distribution of RPE DA

signals is not fixed but varies with training history. Consistent

with this idea, delivery of unpredicted food reward does evoke

a phasic DA signal in the DMS after subjects learn to associate

cue presentation with reward, in contrast to its lack of effect in

eliciting DMS DA before training (Brown et al., 2011).

The underlying mechanism for regional progression of DA

transients, and perhaps DA-RPEs, over the course of training

is not known but may involve direct descending projections of

striatal D1R MSNs onto GABAergic midbrain neurons. Indeed,

we suggested earlier that these projections are involved in the

computation of RPE by disinhibiting DA neurons in response

to reward cues (Figure 3). An important feature of these projec-

tions is their non-reciprocal organization in the form of open

‘‘spiraling’’ loops connecting the more ventromedial to the

more dorsolateral striatal regions (Figure 5A). This anatomical

circuitry must be taken into account when formulating hypothe-

ses of DA-RPEs in learning. In this framework, reward-evoked

DA-RPEs initially restricted to the NAc contribute to increase

the value of the cue (or state) that consistently precedes reward

delivery. As the value of the cue increases, its presentation acti-

vates direct pathway MSNs in the NAc which act to disinhibit

ventral but also more lateral DA neurons in the midbrain, provok-

ing cue-evoked DA-RPEs in the NAc, but now also, the DMS.

Generally speaking, the architecture of this circuit implies that

the temporal backpropagation of DA-RPE from the reward itself

to its earliest predictor also involves a regional propagation of

DA-RPE from the more ventromedial to more dorsal and lateral

striatal domains. In this way, over time, multiple DA-RPEs could

be computed simultaneously within multiple (although not
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entirely independent) striatal subcircuits coursing through the

NAc and the dorsal striatum.

How do drugs of abuse affect the regional progression of DA-

RPEs? As previously mentioned, cocaine potentiates D1R MSN

GABAergic inputs on midbrain GABAergic neurons (Bocklisch

et al., 2013). The topology of this pathway suggests that this

potentiation facilitates the disinhibition of DA neurons in the

VTA as well as the SNc, thereby possibly accelerating and ex-

tending the normal propagation of RPEs from NAc to more dor-

sal and lateral striatal subregions (Figure 5B). Hence, a state

value (V(St)) signal from one striatal circuit may be propagated

to the next. Consistent with this idea, a recent study showed

that in animals with limited cocaine self-administration, the pre-

sentation of a cue that signals drug delivery evokes DA release in

the NAc but not DLS. However, with a prolonged history of

cocaine self-administration, cue-evoked responses progres-

sively appear in the DLS while simultaneously decreasing in

the NAc (Willuhn et al., 2012). These findings are in agreement

with prior measurements of DA using in vivo microdialysis, which

found that DA increases to response-contingent cocaine cues

were detected in the dorsal striatum but not NAc in well-trained

rats self-administering cocaine (Ito et al., 2000, 2002).

While the contribution of drug-induced potentiation of D1R

MSN striatal inputs on midbrain GABA neurons to the ventral-

to-dorsal RPE progression is at this point a hypothesis to be

tested, there are experimental findings consistent with a requi-

site role of the NAc in initiating the propagation of RPEs to other

striatal domains. Remarkably, lesions of the NAc prior to cocaine

self-administration prevent the development of cue-evoked

FSCV DA signals in the DLS (Willuhn et al., 2012). Although the

progressive recruitment of more lateral midbrain DA neurons

for the encoding of RPEsmay depend initially on direct descend-

ing projections from the NAc, a form of Hebbian plasticity can

then occur in the VTA and SNc, allowing excitatory sensory in-

puts from the PPTN, LH, or superior colliculus, for example, to

progressively gain control of more lateral DA neurons.

What are the behavioral consequences of this regional pro-

gression of DA-RPEs? Functionally, the progression of DA-

RPEs to extended striatal domains allows DA-RPE signals to

promote plasticity in different corticostriatal circuits and thereby

engage different psychological processes in the control of

behavior (Everitt and Robbins, 2005; Porrino et al., 2004; Yin

and Knowlton, 2006). Neural activity and plasticity in different

striatal regions supports different forms of associative learning.

For instance, pharmacological inactivation and neural imaging

studies show that the NAc is involved in Pavlovian predictions

(O’Doherty et al., 2004; Robbins and Everitt, 1992). In contrast,

the DLS is involved with instrumental stimulus-response (S-R)

associations whose expression is independent of the represen-

tation of the reward and therefore resistant to postconditioning

changes in outcome value (Robbins and Everitt, 1992; Yin

et al., 2004). Thus, by potentially accelerating the recruitment

of DA neurons in the SNc for the encoding of RPEs and thereby

accelerating the emergence of DA teaching signals in the

DLS, cocaine exposure could promote the acquisition of S-R

associations resulting in habitual behavior. Consistent with

this proposed mechanism, repeated exposure to cocaine or

amphetamine accelerates habit formation (Corbit et al., 2014a;
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LeBlanc et al., 2013; Nelson and Killcross, 2006; Schoenbaum

and Setlow, 2005).

Evidence also supports a role for more dorsal striatal regions

as drug-seeking itself becomes habitual for cocaine and alcohol

(Corbit et al., 2012, 2014b; Zapata et al., 2010). Involvement of

the full ventral-to-dorsal spiral in cocaine-seeking is supported

by a circuit disconnection study in which an NAc lesion in one

hemisphere and DLS microinfusion of a DA antagonist in the

other hemisphere was shown to disrupt this behavior (Belin

and Everitt, 2008). Finally, in Rhesus monkeys self-administering

cocaine, increased involvement of more dorsal striatal circuits

was demonstrated, using metabolic measures, after one hun-

dred sessions as compared to five sessions of cocaine self-

administration, in agreement with a progressive recruitment

along the ventral-to-dorsal axis (Porrino et al., 2004).

In humans, the finding that alcohol cues are associated with

greater activation of dorsal striatal regions in heavy drinkers

and greater activation of ventral striatal regions in light drinkers

is also supportive of a ventral-to-dorsal change (Vollstadt-

Klein et al., 2010). Preferential dorsal striatal activation (Garavan

et al., 2000) and increased dorsal striatal DA release (Volkow

et al., 2006; Wong et al., 2006) in response to cocaine cues in

human cocaine addicts has also been observed.

Note that the progressive involvement of the striatonigral com-

plex during instrumental conditioning and the development of

S-R habits is a natural process observed after extended training

in many tasks involving natural reward (Faure et al., 2005; Yin

et al., 2004) and is not necessarily equivalent with the develop-

ment of compulsion. It has been suggested that drug-induced

neuroadaptations subvert the neural mechanisms of habit for-

mation (possibly via the mechanism described above) causing

exaggerated, maladaptive S-R associations (Belin et al., 2009;

Everitt and Robbins, 2005). Such pathological learning could

be responsible for compulsive drug-seeking by compelling ad-

dicts to seek drug in response to certain stimuli, regardless of

potential adverse consequences. However, a recent study found

that phasic DA signals correlated with cocaine-seeking and a

cocaine-predictive cue are greatly reduced in both the NAc

and the DLS in animals whose drug-taking escalated over

many days (Willuhn et al., 2014). This escalation in intake is often

taken as a model of excessive or compulsive cocaine use; these

results are in-line with the notion that regional progression of

DA-RPE is important for the earlier stages of drug-seeking

behavior (and perhaps again following withdrawal, when drug-

induced DA decrements have resolved), but may not be required

for chronic maintenance of addictive-like behavior, a question to

be resolved by future studies.

Computational Models of DA-RPE, DAergic Spirals, and

Addiction

The ideas expressed above are captured by a recent computa-

tional model that incorporates the TD model of reinforcement by

DA neurons into a biologically realistic corticostriatal architecture

(Keramati and Gutkin, 2013). Inspired by literature on the hierar-

chical organization of behavior (Botvinick et al., 2009; Lashley,

1951; Timberlake, 1994) and prior implementations of the

actor-critic model in addiction (for example, Takahashi et al.,

2008), the authors argue that a given choice can be broken

down into several nested subroutines, from a more abstract
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motivational level (ex: the desire for a cigarette), to more detailed

motor commands involved in the execution of this desire (reach

for packet of cigarette, reach for lighter, etc.). Neurobiologically,

the authors propose that different levels of abstraction are imple-

mented by corresponding corticostriatal circuits, with DA-RPEs

in the NAc reinforcing the more coarse-grained motivational

levels of a decision while DA-RPEs in the DLS reinforce the value

of finer-grained lower-level actions, with multiple corticostrital

circuits (and degrees of abstraction) between these extremes.

The interactions between different levels of reinforcement are

proposed to be mediated by MSN feedback on DA neurons.

Intriguingly, simulations conducted by Keramati and Gutkin

(2013) with this model find different outcomes for natural and

drug reward. While instrumental conditioning with natural reward

results in consistent valuation across different degrees of

abstraction, conditioning with drugs of abuse results in inconsis-

tencies in valuation, with the low level discrete drug-seeking ac-

tions reaching a significantly higher value than the higher-level

decision to engage into drug-seeking. Thus, the value of

engaging in drug use can be relatively low at motivational or

cognitive levels, but extremely high at the level of action selec-

tion (Keramati and Gutkin, 2013). Interestingly, the predicted

DA transients in NAc and DLS from this model parallel those

observed to a cocaine cue in Willuhn et al. (2012).

This framework for DA-RPEs and addiction may therefore

address an additional shortcoming of the original model of

persistent DA-RPEs that, in its simplest formulation, fails to cap-

ture the ambivalence addicts experience toward drugs. Accord-

ing to themodel, drug users choose to engage in drug consump-

tion because it is, among other alternatives present at that time,

the action of highest value. In this scenario, each drug choice is

always, from the perspective of the addict, the best and more

rational choice to make. However this is not the experience of

many treatment-seeking addicts (Heather, 1998; Skog, 2003).

Despite a strong bias toward drugs, addicts can often acknowl-

edge that drug use is not the best decision (Stacy and Wiers,

2010). Discordant valuation signals at different levels of the cor-

ticostriatal system may contribute to these inconsistencies.

Remaining Questions
The DA-RPE hypothesis provides a compelling framework that

continues to inspire reward and addiction research. Here we

have illustrated how integration of this hypothesis with neural

circuit models and new experimental findings provides us with

a way forward in understanding more deeply the role of DA in

addiction. The evidence for a role of DA-RPE in normal reward

learning, at least of some forms (Flagel et al., 2011), is compel-

ling, with correlated measures of DA neuron spiking (Cohen

et al., 2012; Glimcher, 2011; Waelti et al., 2001) and DA release

(Clark et al., 2013; Day et al., 2007; Hart et al., 2014) supporting

such a role. As well, learning can be driven by production of an

artificial DA-RPE by ChR2-mediated activation of VTA DA neu-

rons at the time of expected reward (Steinberg et al., 2013).

These findings must be brought to the circuit and synaptic level

for a mechanistic understanding. An outline of a possible RPE-

generating circuit has been described that can be tested through

selective manipulation of its components during learning. In

addition, one can test whether DA release specifically during
the reward or cue predictor modulates or modifies specific syn-

aptic changes that underlie later emitted behavior.

Because addictive behavior likewise involves the acquisition

of associations between cues and reward and actions and

reward, DA-RPEs logically should also contribute to the acquisi-

tion of drug-seeking and taking behavior. However, because

drugs of abuse stimulate DA neurons via their pharmacological

properties, additional acute and long-term alterations of the rele-

vant neural circuitry occur. The distinct pharmacokinetics and

mechanisms of action of different drugs of abuse undoubtedly

have implications for the proposed RPE-like signal and learning

processes that are proposed here and remain an important area

of future investigation. The outstanding question is how these

acute and long-term pharmacological effects of drugs alter the

ongoing and future probability of drug-cue responsiveness and

of actionsmade to obtain drug. Does the ability of drugs of abuse

to stimulate DA produce aberrant DA-RPE-mediated learning

processes within and across striatal circuits that underlie addic-

tive behavior? Is this mediated directly through the persistent

ability of drugs to stimulate DA activity, acting as an aberrant

RPE signal? Or is this mediated through drug-induced changes

in the mesolimbic and nigrostriatal circuits that serve to patho-

logically amplify the response to other stimuli that induce DA-

RPEs, such as cue drug predictors (or both)?

These questions are not as yet answered.Whatwe knowat the

present time includes the following: (1) drugs of abuse increase

phasic DA release, as do natural rewards, fulfilling one require-

ment for acting as a DA-RPE; (2) during cocaine self-administra-

tion, phasic DA release is observed in DA terminal regions in

response to cocaine-paired cues, as well as cocaine; (3) drugs

of abuse produce both short- and long-lasting changes in synap-

tic plasticity within the putative error computation circuit, altering

excitatory and inhibitory transmission at specific inputs onto VTA

DA and GABA neurons and onto striatal MSNs; and (4) synapse-

specific reversal of some of these long-lasting changes in

synaptic plasticity reduces or otherwise alters behavior in animal

models of drug seeking.

These findings are exceptionally promising, and point directly

to additional studies to address the possible function of DA-RPE

in aspects of addiction:

(1) First, if drugs of abuse act like natural reward on DA sys-

tems to drive learning via an RPE mechanism, then their

sensory or pharmacological attributes should activate

bursting in DA neurons during learning like natural re-

wards do. While current findings suggest this is so,

drug-induced DA neuron activation during early learning

must be demonstrated to exist. If these DA signals that

accompany drug injection serve as an RPE that drives

learning, selective blockade of this signal should block

learning that is integral to the development of addiction.

To address these points, measurements of the activity

of identified DA neurons using electrophysiology, deep

brain calcium imaging, and FSCV can be made to deter-

mine when these neurons are activated and when DA is

released relative to behavioral and drug events during

learning, and temporally specific inhibition of DA neuron

activity can be conducted to counter the drug-induced
Neuron 88, October 21, 2015 ª2015 Elsevier Inc. 257
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putative DA-RPE to test causality. The feasibility of this

latter approach was recently demonstrated in Th::Cre

rats in which the light-sensitive inhibitory channel, halor-

hodopsin (NpHR), was expressed in DA neurons and

NpHR-mediated inhibition of VTA DA somata was found

to greatly reduce cocaine-induced phasic DA release in

the NAc (McCutcheon et al., 2014).

(2) Next, do drug-evoked synaptic changes in the putative

DA-RPE circuit contribute to enhancement of the RPE

signal itself, including the accelerated transfer of the

RPE signal from ventral to more dorsal striatal circuits?

Blockade or reversal of these changes in a precise syn-

apse-specific manner, coupled with electrophysiological

or FSCVmeasures of DA neuron activity at different levels

of the striatal circuitry can address this question.

(3) Finally, do the circuit manipulations that affect the puta-

tive DA RPE signal correspondingly alter behavior? For

example, if the emergence of DA-RPEs in the DLS de-

pends upon drug-induced potentiation of excitatory syn-

apses onto NAc MSNs (Ma et al., 2014; Pascoli et al.,

2014) or of the D1RMSNprojection to VTAGABA neurons

(Bocklisch et al., 2013), then the inhibition of plasticity

selectively at these synapses should prevent regional

propagation of DA-RPE and thereby prevent development

of addiction-related behavior and/or compulsive drug-

seeking. Taking the opposite approach, using optoge-

netics to mimic a DA-RPE in the DLS during a task

involving natural reward should accelerate the develop-

ment of habitual andperhapscompulsive reward-seeking.
Alternative Views
We have focused our review on one aspect of DA neuron func-

tion and its possible contribution to addiction. This is not to

give short shrift to other critical neural changes that accompany

drug abuse, such as the well-documented decrements in pre-

frontal cortical function found in human addicts that surely

contribute to maladaptive decision-making, and the adaptations

in brain stress systems that may also critically contribute to

compulsive drives to use drugs (Koob and Le Moal, 2008;

Koob and Volkow, 2010). Multiple alterations in neural circuits

likely interact to contribute to the disease state of addiction.

Importantly, it is possible that the persistent DA signal will be

identified as a key component of the addictive process, but

differently than focused upon here. For example, a prominent

view is that the DA surge produced by drugs of abuse sensitizes

incentive motivational processes, including those driven by

learning, rather than directly providing a teaching signal (Robin-

son and Berridge, 2001). It is also possible that drug-induced

DA increases will be shown to directly reinforce behavioral

responses to cues and actions, but not to contribute to mecha-

nisms that drive these behavioral responses to compulsive levels

seen in the addict. Thus, in the end, as new results continue to

emerge, theories may be updated, interpretations may change.

Conclusion
In conclusion, the importance of a DA-RPE in addiction remains

an intriguing open question. What this consideration has high-
Neuron 88, October 21, 2015 ª2015 Elsevier Inc.
lighted is the remarkable progress made by investigating DA

function at the level of circuits and synapses, taking advantage

of contemporary tools allowing for spatial and temporal preci-

sion. This circuit-based approach combined with sophisticated

animal models of well-defined addiction phenotypes is required

to address the precise role(s) of DA in addiction.
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