Skip to content →

Publications

[* undergraduate, ** high school,​ §equal contributors, ISU student]​

26) Komandur A**§, Fazyl A§, Stein W, Vidal-Gadea AG. 2023. The mechanoreceptor pezo-1 is required for normal crawling locomotion in the nematode C. elegans. microPublications Biology. DOI: 10.17912/micropub.biology.001085 PDF

25) Stein W, Torres G, Giménez L, Espinosa-Novo, Geißel JP, Vidal-Gadea AG, Harzsch S. 2023. Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit. Frontiers in Cellular Neuroscience 17 DOI: https://doi.org/10.3389/fncel.2023.1263591 PDF

24) Mobile Z, Follmann R, Vidal-Gadea AG, Rosa E. 2022. Quantitative description of neuronal calcium dynamics in C. elegans’ thermoreception. BioSystems. DOI: 10.1016/j.biosystems.2022.104814 PDF

23) Stein W, DeMaegd M, Benson A, Roy R, Vidal-Gadea AG. 2022. Combining old and new tricks: the study of genes, neurons, and behavior in crayfish. Frontiers in Physiology DOI: 10.3389/fphys.2022.947598 PDF

22) Hughes KJ, Vidal-Gadea AG. 2022. Methods for modulating and measuring neuromuscular exertion in C. elegans. in Haspel G, Hart AC (eds) C. elegans: Methods and Applications. 3rd edition. Vol 2468 Humana, New York, NY. DOI: https://doi.org/10.1007/978-1-0716-2181-3_19 PDF

21) Stein W, DeMaegd ML, Braun LY, Vidal-Gadea AG, Harris AL, Städele C. 2022. The dynamic range of voltage-dependent gap junction signaling is maintained by Ih-induced membrane potential depolarization. J Neurophys DOI: https://doi.org/10.1101/2021.12.16.472972 PDF

20) Fernández EM, Cutraro YB, Adams J, Monteleone MC, Hughes K, Frasch AC, Vidal-Gadea AG, Brocco MA. 2021. Neuronal membrane glycoprotein (nmgp-1) gene deficiency affects chemosensation-related behaviors, dauer exit and egg-laying in Caenorhabditis elegans. J. Neurochem. DOI: 10.1111/jnc.15543 PDF.

19) Hughes K, Shah A*, Bai X, Adams J, Bauer R, Jackson J*, Harris E*, Ficca A**, Freebairn P, Mohammed S*, Fernández EM, Bainbridge C, Brocco MA, Stein W, Vidal-Gadea AG. 2021. Distinct mechanoreceptor pezo-1 isoforms modulate food intake in the nematode Caenorhabditis elegans. Genes, Genomes, Genetics. 12(3) jkab429 (DOI: 10.1093/g3journal/jkab429). PDF

18) Leonard N**, Vidal-Gadea AG. 2021. Affordable Caenorhabditis elegans tracking system for classroom use. microPublication Biology. https://doi.org/10.17912/micropub.biology.000377 Videos, Template PDF

17) Stein W, Talasu S, Vidal-Gadea AG, DeMaegd M. 2020. Physiologists turned Geneticists: Identifying transcripts and genes for neuronal function in the Marbled Crayfish, Procambarus virginalis JUNE. Fall 2020, 19(1):A36-A51 https://www.funjournal.org/2020-volume-19-issue-1/ PDF

16) Bainbridge C, Clites B, Caldart CS, Palacios B, Rollins K, Golombek DA, Pierce JT, Vidal-Gadea AG2019. Factors that influence magnetic orientation in C. elegans. JCPA. DOIhttps://doi.org/10.1007/s00359-019-01364-y PDF​​.

15) Hughes K, Rodriguez A, Flatt K, Sneha R, Schuler A*, Rodemoyer B*, Veerappan V, Cuciarone K*, Kullman A**, Lim C**, Gutta N**, Vemuri S*, Andriulis V*, Niswonger D*, Barickman L*, Stein W, Singhvi A, Schroeder N, Vidal-Gadea AG. 2019. Physical exertion exacerbates decline in the musculature of an animal model of Duchenne muscular dystrophy. PNAS. DOIhttps://doi.org/10.1073/pnas.1811379116 PDF. NEWS

14) Gährs C, Vidal-Gadea AG. 2018. “Locomotion.” in Encyclopedia of Animal Cognition and Behavior,Eds. Vonk J, Shackelford T. Springer,ISBN: 978-3-319-55066-4. DOIhttps://doi.org/10.1007/978-3-319-47829-6_1450-1 PDF.

13) Vidal-Gadea AGBainbridge C, Clites B, Palacios B, Bakhtiari L, Gordon V, Pierce J. 2018. Response to Comment on “Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans”. eLife. eLife 2018;7:e31414DOI: 10.7554/eLife.31414 PDF​. NEWS

12) Bainbridge C, Rodriguez AMSchuler A*, Cisneros M*, Vidal-Gadea AG.​ 2016. Magnetic orientation in C. elegans relies on the integrity of the villi of the AFD magnetosensory neurons. J Physiology Paris DOI: 10.1016/j.jphysparis.2016.12.002 PDF​.​

11) Bainbridge C, Schuler A*, Vidal-Gadea AG​. 2016. Method for the assessment of neuromuscular integrity and burrowing choice in vermiform animals. J Neurosci Methods 264:40-46 DOI: 10.1016/j.jneumeth.2016.02.023 PDF​.

10) Vidal-Gadea AG​, Ward K*, Beron C*, Ghorashian N, Gokce S, Russell J, Truong N**, Parikh A*, Gadea OE, Ben-Yakar A, Pierce-Shimomura JT. 2015. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. eLife. DOI: 10.7554/eLife.07493 PDFNEWS

9) Beron C*§, Vidal-Gadea AG§, Cohen J, Parikh A*, Hwang G*, Pierce-Shimomura JT. 2015. The burrowing behaviour of the nematode Caenorhabditis elegans: A new assay for the study of neuromuscular disorders. Genes, Brain and Behavior. 14(4):357-368. DOI: 10.1111/gbb.12217 PDF

JOINED ILLINOIS STATE UNIVERSITY


8) Russell J, Vidal-Gadea AG, Makay A*, Laham R, Pierce-Shimomura JT. 2014. Humidity sensation requires both mechanosensory and thermosensory pathways in C. elegans. PNAS. 111(22):8269-74. DOI: 10.1073/pnas.1322512111 PDF

7) Vidal-Gadea AG, Belanger JH. 2013. The evolutionary transition to sideway-walking gaits in brachyurans was accompanied by a reduction in the number of motor neurons innervating proximal leg musculature. Arthropod Structure and Development. 42(6):443-454. DOI: 10.1016/j.asd.2013.07.003 PDF​

6) Vidal-Gadea AG, Pierce-Shimomura JT. 2012. Conserved role of dopamine in the modulation of behavior. Journal of Communicative and Integrative Biology. 5(5)1-8. DOI: 10.4161/cib.20978 PDF

5) Vidal-Gadea AG, Davis S, Becker L*, Pierce-Shimomura JT. 2012. Coordination of behavioral hierarchies during environmental transitions in Caenorhabditis elegans. Worm. 1(1)5-11. DOI: 10.4161/worm.19148 PDF​

4) Vidal-Gadea AG, Topper S, Young L, Crisp A, Kressin L*, Elbel E*, Maples T*, Brauner M, Erbguth K, Axelrod A, Gottschalk A, Siegel D, Pierce-Shimomura JT. 2011. Caenorhabditis elegans​ selects distinct crawling and swimming gaits via dopamine and serotonin. PNAS.108(42)17504-9. DOI: 10.1073/pnas.1108673108 PDF NEWS

3) Vidal-Gadea AG, Xingjian J, Simpson D, Kondoh Y, Allen R, Newland PL. 2010. Coding characteristics of spiking local interneurons during imposed limb movements in the locust. J Neurophysiology. 103:603-15. DOI: 10.1152/jn.00510.2009 PDF

2) Vidal-Gadea AG, Belanger JH. 2009. Muscular anatomy of the legs of the forward walking crab ​Libinia emarginata​ (Decapoda, Brachyura, Majoidea). Arthropod Structure and Development 38(3):179-94. DOI: 10.1016/j.asd.2008.12.002 PDF

1) Vidal-Gadea AG, Rinehart MD, Belanger JH. 2008. Skeletal adaptations for sideways and forwards walking by three decapod species. Arthropod Structure and Development 37(2):95-108. DOI: 10.1016/j.asd.2007.06.002​ PDF​ NEWS

Publications under review or in preparation​

1. Fazyl A, Sawilchik*, Stein W, Vidal-Gadea AG. 2024. Muscular expression of pezo-1 differentially contributes to swimming and crawling production in the nematode C. elegans. (under review). DOI: https://doi.org/10.1101/2024.08.13.607367

1. Fazyl A, Sawilchik*, Stein W, Vidal-Gadea AG. 2024. Muscular expression of pezo-1 differentially contributes to swimming and crawling production in the nematode C. elegans. (under review at Biophysical Journal). DOI: https://doi.org/10.1101/2024.08.13.607367

2. Awe T, Akinosho A, Niha S, Kelly L**, Adams J, Stein W, Vidal-Gadea AG. 2024. The AMsh glia of C. elegans modulates the duration of touch-induced escape responses. (Revising for PNAS) DOI: https://doi.org/10.1101/2023.12.13.571291

3. Fazyl A§, Anbu A§*, Kollbaum S*, Conklin E, Schroeder N, Vidal-Gadea AG. 2024. Characterization of muscle growth and sarcomere branching in the striated musculature of C. elegans. (under review at JEB). DOI: https://doi.org/10.1101/2024.08.30.610496

4. Marchiafava D, Hughes-Wiles, Jazireian P, Fazyl A, Stein W, Engelke M, Vidal-Gadea AG. 2024. Two independent mechanisms are responsible for increased cytosolic calcium in developing dystrophic muscles. (in preparation).

5. Akinosho A, Benefield Z*, Fritz A*, Stein W, Vidal-Gadea AG. 2024. Transgenerational effect of the Martian decreased gravitational and magnetic fields on the nematode C. elegans. (in preparation).

Preprints​

Hughes KJShah A, Bai X, Adams J, Bauer R, Jackson J, Bainbridge CHarris E*, Ficca A**, Freebairn P, Mohammed S**, Fernández EM, Brocco M, Stein W, Vidal-Gadea AG. 2021. Distinct mechanoreceptor pezo-1 isoforms modulate food intake in the nematode Caenorhabditis elegans. bioRxiv. DOI:  https://doi.org/10.1101/2021.05.24.445504

Bainbridge C, McDonald J*, Benefield Z*, Stein W, Vidal-Gadea A.2019.Unbiased analysis of magnetic orientation by C. elegans reveals the use of distinct turning strategies to align with magnetic fields and to adopt their preferred migratory direction. bioRxiv. ​DOI: https://doi.org/10.1101/688408

Bainbridge C, Stein W, Vidal-Gadea A.2019. Vidalgadealab-behavioral turn analysis (Version 1). Zenodo. DOIhttp://doi.org/10.5281/zenodo.3263894​

Rodriguez AM§Hughes K§, Schuler A*, Rodemoyer B*, Bainbridge CBarickman L*, Cuciarone K*, Kullman A**, Lim C**, Gutta N**, Giliana Y*, Sathyamurthy L**, Singaraju S**, Vemuri S*, Andriulis V*, Niswonger D*, Vidal-Gadea AG. 2018. Intracellular calcium dysregulation precedes muscle decline in C. elegans modeling Duchenne muscular dystrophy. bioRxiv. DOI:10.1101/360388 PDF

Bainbridge C, Stein W, Vidal-Gadea AG. 2017. Animal heading calculator. GitHub. DOI10.5281/zenodo.1002304​

Vidal-Gadea AG, Caldart C, Bainbridge C, Clites B, Palacios B, Bakhtiari L, Gordon V, Golombek D, Pierce J. 2018. Temporal and spatial factors that influence magnetotaxis in C. elegans. bioRxiv. DOI: 10.1101/252700 PDF​​.

Skip to toolbar