Skip to content →

Magnetic Orientation

Many organisms use the magnetic field of the earth to navigate their environment. While humans use technology to create and use magnetic fields, we know little about how magnetic fields interact with living systems. Our lab is using the nematode C. elegans to investigate how animals detect and orient to the magnetic field of the earth.

Explore the magnetic field of the earth at different world locations and times using NOAA’s dedicated site

https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm


https://www.youtube.com/playlist?list=PLTfi_Dr3KrP8Au8KUl-d76MOBzkDpsYWa

magnetic cages (like the one picture below) allow us to generate magnetic fields in any direction in 3D, with strengths ranging from 0 Gauss up to 3 x earth’s field.

Magnetic cage

Each of the three coil systems is composed of four squares (four square Merritt coil design). Each system creates a magnetic field in either the X, Y, or Z direction. For each system two separate wire systems that can be run in parallel (to create a single magnetic field in the desired direction), or in antiparallel (to pass the same amount of current through the system without generating a magnetic field). High resolution 1/100°C permanently installed in the center and periphery of the cage constantly report any slight temperature fluctuation (a fan constantly blows air on the system to prevent any thermal gradient from developing).

The AFD neurons (above) are necessary and sufficient for animals orienting to magnetic fields. We showed that these cells respond to magnetic stimuli.

Jessica Adams (Postdoc), ‘Tope Awe (PhD), Aalimah Akinosho (MS), and Teagan Zack (URG) are our team in charge of our magnetic orientation and detection project.
Our system allows us to use computers to control the magnetic field regiment and to continuously monitor fluctuations in magnetic field or temperature within the test volume.

Worms from different hemispheres orient to earth-like magnetic fields showing preferences that correlate with the magnetive field in their native environment (A). Similarly, burrowing worms from northern and suthern hemispheres migrate at opposite directions in a natural magnetic field (B).

This work is funded by The National Science Foundation. Grant# 11520-02-412009377​

Skip to toolbar